Prof. Dr. Frederik Witt

Lehrstuhlleiter

Forschung

Theoretische Mathematik / Differential- und algebraische Geometrie

Preprints:   arXiv | iNSPIRE

Datenbanken:   MathSciNet | zbMATH

Veranstaltungen im WiSe 23/24

  • Haupt- / Masterseminar Kombinatorische kommutative Algebra   ILIAS | c@mpus | Ankündigung
  • Hauptseminar Diskrete und algebraische Methoden in der Informatik (DaMnIt)   c@mpus
  • Vorlesung HM 3 (vertieft) aer / mawi   ILIAS | c@mpus

14 Algebraic geometry

  • 14M25 Toric varieties, Newton polyhedra 
  • 14H60 Vector bundles on curves and their moduli
  • 14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli

32 Several complex variables and analytic spaces

  • 32Q25 Calabi-Yau theory

35 Partial differential equations

  • 35K55 Nonlinear parabolic equations  
  • 35R01 Partial differential equations on manifolds

52 Convex and discrete geometry

  • 52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry) 

53 Differential geometry

  • 53C07 Special connections and metrics on vector bundles (Hermite-Einstein-Yang-Mills)
  • 53C10 G-structures
  • 53C24 Rigidity results
  • 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
  • 53C26 Hyper-Kähler and quaternionic Kähler geometry, "special'' geometry 
  • 53C27 Spin and Spinc geometry
  • 53C29 Issues of holonomy
  • 53C38 Calibrations and calibrated geometries 
  • 53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) 
  • 53C50 Lorentz manifolds, manifolds with indefinite metrics
  • 53C80 Applications to physics
  • 53D18 Generalized geometries (à la Hitchin) 
  • 53D35 Global theory of symplectic and contact manifolds

58 Global analysis, analysis on manifolds

  • 58D17 Manifolds of metrics (esp. Riemannian)
  • 58D27 Moduli problems for differential geometric structures
  • 58Exx Variational problems in infinite-dimensional spaces
  • 58E30 Variational principles
  • 58J32 Boundary value problems on manifolds
  • 58J60 Relations with special manifold structures (Riemannian, Finsler, etc.

81 Quantum theory

  • 81T30 String and superstring theories; other extended objects (e.g., branes)
  • 81T60 Supersymmetric field theories

83 Relativity and gravitational theory

  • 83E50 Supergravity

Veröffentlichungen

  1. 21. Altmann, K., Witt, F.: Toric co-Higgs sheaves. J. Pure Appl. Algebra. 225, 20 (2021). https://doi.org/10.1016/j.jpaa.2020.106634.
  2. 20. Ammann, B., Kröncke, K., Weiss, H., Witt, F.: Holonomy rigidity for Ricci-flat metrics. Math. Z. 291, 303--311 (2019). https://doi.org/10.1007/s00209-018-2084-3.
  3. 19. Mazzeo, R., Swoboda, J., Weiss, H., Witt, F.: Asymptotic geometry of the Hitchin metric. Commun. Math. Phys. 367, 151--191 (2019). https://doi.org/10.1007/s00220-019-03358-y.
  4. 18. Mazzeo, R., Swoboda, J., Weiss, H., Witt, F.: Ends of the moduli space of Higgs bundles. Duke Math. J. 165, 2227--2271 (2016). https://doi.org/10.1215/00127094-3476914.
  5. 17. Ammann, B., Weiss, H., Witt, F.: A spinorial energy functional: critical points and gradient flow. Math. Ann. 365, 1559--1602 (2016). https://doi.org/10.1007/s00208-015-1315-8.
  6. 16. Ammann, B., Weiss, H., Witt, F.: The spinorial energy functional on surfaces. Math. Z. 282, 177--202 (2016). https://doi.org/10.1007/s00209-015-1537-1.
  7. 15. Mazzeo, R., Swoboda, J., Weiß, H., Witt, F.: Limiting configurations for solutions of Hitchin’s equation. In: Actes de Séminaire de Théorie Spectrale et Géométrie. Année 2012--2014. pp. 91--116. St. Martin d’Hères: Université de Grenoble I, Institut Fourier (2014). https://doi.org/10.5802/tsg.296.
  8. 14. Fino, A., Semmelmann, U., Wiśniewski, J., Witt, F. eds: Mini-workshop: Quaternion Kähler Structures in              Riemannian and Algebraic Geometry. Oberwolfach Rep. 10, 3115--3145 (2013). https://doi.org/10.4171/OWR/2013/53.
  9. 13. Weiß, H., Witt, F.: A heat flow for special metrics. Adv. Math. 231, 3288--3322 (2012). https://doi.org/10.1016/j.aim.2012.08.007.
  10. 12. Weiss, H., Witt, F.: Energy functionals and soliton equations for \(G_2\)-forms. Ann. Global Anal. Geom. 42, 585--610 (2012). https://doi.org/10.1007/s10455-012-9328-y.
  11. 11. Hochenegger, A., Witt, F.: On complex and symplectic toric stacks. In: Contributions to algebraic geometry. Impanga lecture notes. Based on the Impanga conference on algebraic geometry, Banach Center, Bedlewo, Poland, July 4--10, 2010. pp. 305--331. Zürich: European Mathematical Society (EMS) (2012). https://doi.org/10.4171/114-1/11.
  12. 10. Gayet, D., Witt, F.: Deformations of associative submanifolds with boundary. Adv. Math. 226, 2351--2370 (2011). https://doi.org/10.1016/j.aim.2010.09.014.
  13. 9. Jeschek, C., Witt, F.: Generalised geometries, constrained critical points and Ramond-Ramond fields. Fortschr. Phys. 59, 494--517 (2011). https://doi.org/10.1002/prop.201000097.
  14. 8. Witt, F.: Gauge theory in dimension 7. In: Special metrics and supersymmetry. Lectures given in the workshop on geometry and physics: special metrics and supersymmetry, Bilbao, Spain, 29--31 May 2008. pp. 180--195. Melville, NY: American Institute of Physics (AIP) (2009). https://doi.org/10.1063/1.3089202.
  15. 7. Witt, F.: Metric bundles of split signature and type II supergravity. In: Recent developments in pseudo-Riemannian geometry. pp. 455--494. Zürich: European Mathematical Society (2008).
  16. 6. Witt, F.: Special metrics and triality. Adv. Math. 219, 1972--2005 (2008). https://doi.org/10.1016/j.aim.2008.07.017.
  17. 5. Witt, F.: Calabi-Yau manifolds with \(B\)-fields. Rend. Semin. Mat., Univ. Politec. Torino. 66, 1--21 (2008).
  18. 4. Gmeiner, F., Witt, F.: Calibrations and T-duality. Commun. Math. Phys. 283, 543--578 (2008). https://doi.org/10.1007/s00220-008-0571-9.
  19. 3. Witt, F.: Generalised \(G_2\)-manifolds. Commun. Math. Phys. 265, 275--303 (2006). https://doi.org/10.1007/s00220-006-0011-7.
  20. 2. Jeschek, C., Witt, F.: Generalised $G_2$-structures and type IIB superstrings. J. High Energy Phys. 053, 15 (2005). https://doi.org/10.1088/1126-6708/2005/03/053.
  21. 1. Witt, F.: Conformal properties of harmonic spinors and lightlike geodesics in signature (1,1). J. Geom. Phys. 46, 74--97 (2003). https://doi.org/10.1016/S0393-0440(02)00151-1.
  • ab 2015: Lehrstuhl für Differentialgeometrie, Universität Stuttgart
  • 2010-2015: Tenure-Track-Professur für theoretische Mathematik, Universität Münster
  • 2009-2010: Juniorprofessor für Theoretische und Mathematische Physik LMU München
  • 2005-2009: PostDoc (FU Berlin, École Polytechnique, Universität Regensburg
  • 2005: Promotion (University of Oxford)

M.Sc.

  • Ko-Higgsbündel über projektiven Räumen, U Stuttgart, 2023
  • Protein Sequences and Tropical Geometry, U Stuttgart, 2022
  • Torische Co-Higgsbündel und prä-bewertete Vektorräume, U Stuttgart, 2021
  • Quotienten in der algebraischen Geometrie, U Stuttgart, 2017
  • Limiting configurations from a Hermitian point of view, U Stuttgart, 2016
  • Hodge Theory on Noncompact Manifolds, U Stuttgart, 2016
  • Die Momentenabbildung in der symplektischen und torischen Geometrie (ko-betreute Diplomarbeit), FU Berlin, 2008


B.Sc.

  • Das NTRU-Kryptosystem, U Stuttgart, 2023
  • Mathieu groups, U Stuttgart, 2021
  • Die tropische Grassmansche Varietät, U Stuttgart, 2020
  • Der Satz von Mordell-Weil für elliptische Kurven, U Stuttgart, 2020
  • Reguläre algebraische Kurven, U Stuttgart, 2019

  • Über die Klassifikation komplexer Flächen, U Stuttgart 2019
  • Toric Ideals, Gröbner Bases and the Knapsack Problem, U Stuttgart 2016
  • Hirzebruch-Flächen - Konstruktion und Untersuchung einer symplektischen Mannigfaltigkeit, WWU Münster, 2014
  • Symplectic toric manifolds, LMU München, 2010

Staatsexamen / B.A. / M.Ed.

  • Elliptische Kurven und Galoiserweiterungen von Q, U Stuttgart, 2022
  • Die Sätze von Desargues und Pappus in der projektiven Geometrie, U Stuttgart, 2021
  • Platonische Körper in der Theorie und Praxis, U Stuttgart, 2020
  • Neuronale Netze und Gröbnerbasen, U Stuttgart, 2019
  • Die Picard- und Jacobi-Varietät einer Riemannschen Fläche, U Stuttgart, 2019
  • Public-Key Kryptographie, WWU Münster, 2014
  • Elliptische Kurven über endlichen Körpern, WWU Münster, 2014
  • Das Gruppengesetz einer kubischen Kurve, WWU Münster, 2014
  • Die Grad-Genus-Formel, WWU Münster, 2014
  • Minimalflächen und harmonische Abbildungen, WWU Münster, 2013

Universität Stuttgart

WWU Münster

  • Skalarkrümmung und Minimalflächen (SoSe 15)
  • Differentialgeometrie 1 (WiSe 14/15)
  • Geometrische Variationsrechnung (SoSe 14)
  • Mathematische Grundlagen der String-Theorie (SoSe 13)
  • Geometrische Analysis (WiSe 12/13)
  • Holomorphe Vektorbündel (SoSe 12)
  • Riemannsche Flächen (SoSe 11)
  • Komplexe Geometrie (WiSe 10/11)

LMU München

  • Yang-Mills-Theorie (SoSe 10)
  • Symplektische Geometrie 2 (WiSe 09/10)
  • Symplektische Geometrie 1 (SoSe 09)
Dieses Bild zeigt Frederik Witt

Frederik Witt

Prof. Dr.

Professor - Lehrstuhl für Differentialgeometrie

Zum Seitenanfang