This image shows Frederik Witt

Frederik Witt

Prof. Dr.

Professor - Chair of Differential Geometry
Institute for Discrete Structures and Symbolic Computation

Contact

Pfaffenwaldring 57
70569 Stuttgart
Deutschland
Room: 7.348

Office Hours

  • during term time: by appointment
  • after the winter term: first week after the end of the winter term and two weeks before the summer term by appointment
  • after the summer term: two weeks after the end of the summer term and two weeks before the winter term by appointment

 

 

Subject

Pure Mathematics / Geometry (current focus: Toric Geometry)

Preprints:   arXiv | INSPIRE

Research summary:   MathSciNet (requires access rights) | zbMATH

  1. Toric co-Higgs sheaves (with K. Altmann), J. Pure Appl. Algebra 225 (2021), no. 8, 20 pp.
  2. Asymptotic Geometry of the Hitchin Metric (with R. Mazzeo, J. Swoboda and H. Weiß), Comm. Math. Phys. 367 (2019), no. 1, 151–191.
  3. Holonomy rigidity for Ricci-flat metrics (with B. Ammann, K. Krönke and H. Weiß), Math. Z. 291 (2019), no. 1-2, 303–311.
  4. Ends of the moduli space of Higgs bundles  (with R. Mazzeo, J. Swoboda and H. Weiß), Duke Math. J. 165 (2016), no. 12, 2227–2271.
  5. A spinorial energy functional: critical points and gradient flow (with B. Ammann and H. Weiß), Math. Ann. 365 (2016), no. 3-4, 1559–1602.
  6. The spinorial energy functional on surfaces (with B. Ammann and H. Weiß), Math. Z. 282 (2016) no. 1-2, 177–202.
  7. Limiting configurations for solutions of Hitchin's equation (with R. Mazzeo, H. Weiß and J. Swoboda), Séminaire de Théorie spectrale et géométrie (Grenoble), 31 (2012-2014), pp. 91–116
  8. Mini-Workshop: Quaternion Kähler Structures in Riemannian and Algebraic Geometry held November 3-9, 2013. Organised by A. Fino, U. Semmelmann, J. Wiśniewski and F. Witt. Volume 10, Issue 4, pp. 3115–3145, Oberwolfach Reports EMS, 2013
  9. A heat flow for special metrics (with H. Weiß), Adv. Math. 231 (2012) no. 6, 3288–3322
  10. Energy functionals and soliton equations for G2-forms (with H. Weiß), Ann. Global Anal. Geom. 42 (2012) no. 4, 585–610
  11. On complex and symplectic toric stacks (with A. Hochenegger), in: "Contributions to Algebraic Geometry" (Hrsg. P. Pragacz), Pages 305–333, EMS Series of Congress Reports, 2012
  12. Generalised geometries, constrained critical points and Ramond-Ramond fields (with C. Jeschek), Fortschr. Phys. 59 (2011) no. 5-6, 494–517
  13. Deformations of associative submanifolds with boundary (with D. Gayet), Adv. Math. 226 (2011) no. 3, 2351–2370
  14. Gauge theory in dimension seven, in: L. de Andrés, M. Fernández, O. Garay, L. Ugarte (ed.),
    Workshop on Geometry and Physics: Special metrics and supersymmetry pp. 180–195, AIP 2009
  15. Special metrics and Triality, Adv. Math. 219 (2008) no. 5, 1972–2005
  16. Calibrations and T-duality (with F. Gmeiner), Comm. Math. Phys. 283 (2008) no. 2, 543–578
  17. Calabi-Yau manifolds with B-fields, Rend. Sem. Mat. Univ. Pol. Torino 66 (2008) no. 1, 1–21
  18. Metric bundles of split signature and type II supergravity, Recent developments in pseudo-Riemannian geometry, 455–494, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008
  19. Calibrations on spaces with GxG-structure (with F. Gmeiner), Fortschr. Phys. 55 (2007) no. 5-7, 727–730
  20. Generalised G2-manifolds, Comm. Math. Phys. 265 (2006) no. 2, 275–303
  21. Generalised G2-structures and type IIB superstrings (with C. Jeschek), J. High Energy Phys. 2005 no. 3, 053, 15 pp
  22. Conformal properties of harmonic spinors and lightlike geodesics in signature (1,1), J. Geom. Phys. 46 (2003) no. 1, 74–97

Courses Summer Term 2023:

 

  Short CV:

  • since 2015: Lehrstuhl für Differentialgeometrie, University Stuttgart
  • 2010-2015: Tenure-Track-Professor for theoretical Mathematics, WWU Münster
  • 2009-2010: Juniorprofessor for theoretical und mathematical Physik LMU München
  • 2005-2009: PostDoc (FU Berlin, École Polytechnique, University of Regensburg
  • 2005: Promotion (University of Oxford)

14 Algebraic geometry

  • 14M25 Toric varieties, Newton polyhedra 
  • 14H60 Vector bundles on curves and their moduli
  • 14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli

32 Several complex variables and analytic spaces

  • 32Q25 Calabi-Yau theory

35 Partial differential equations

  • 35K55 Nonlinear parabolic equations  
  • 35R01 Partial differential equations on manifolds

52 Convex and discrete geometry

  • 52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry) 

53 Differential geometry

  • 53C07 Special connections and metrics on vector bundles (Hermite-Einstein-Yang-Mills)
  • 53C10 G-structures
  • 53C24 Rigidity results
  • 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
  • 53C26 Hyper-Kähler and quaternionic Kähler geometry, "special'' geometry 
  • 53C27 Spin and Spinc geometry
  • 53C29 Issues of holonomy
  • 53C38 Calibrations and calibrated geometries 
  • 53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) 
  • 53C50 Lorentz manifolds, manifolds with indefinite metrics
  • 53C80 Applications to physics
  • 53D18 Generalized geometries (à la Hitchin) 
  • 53D35 Global theory of symplectic and contact manifolds

58 Global analysis, analysis on manifolds

  • 58D17 Manifolds of metrics (esp. Riemannian)
  • 58D27 Moduli problems for differential geometric structures
  • 58Exx Variational problems in infinite-dimensional spaces
  • 58E30 Variational principles
  • 58J32 Boundary value problems on manifolds
  • 58J60 Relations with special manifold structures (Riemannian, Finsler, etc.

81 Quantum theory

  • 81T30 String and superstring theories; other extended objects (e.g., branes)
  • 81T60 Supersymmetric field theories

83 Relativity and gravitational theory

  • 83E50 Supergravity

M.Sc.

  • Elliptic curves and Galois expansions of Q, U Stuttgart, 2022
  • Protein Sequences and Tropical Geometry, U Stuttgart, 2022
  • Torische Co-Higgsbündel und prä-bewertete Vektorräume, U Stuttgart, 2021
  • Quotienten in der algebraischen Geometrie, U Stuttgart, 2017
  • Limiting configurations from a Hermitian point of view, U Stuttgart, 2016
  • Hodge Theory on Noncompact Manifolds, U Stuttgart, 2016
  • Die Momentenabbildung in der symplektischen und torischen Geometrie (ko-betreute Diplomarbeit), FU Berlin, 2008


B.Sc.

  • Mathieu groups, U Stuttgart, 2021
  • Die tropische Grassmansche Varietät, U Stuttgart, 2020
  • Der Satz von Mordell-Weil für elliptische Kurven, U Stuttgart, 2020
  • Reguläre algebraische Kurven, U Stuttgart, 2019

  • Über die Klassifikation komplexer Flächen, U Stuttgart 2019
  • Toric Ideals, Gröbner Bases and the Knapsack Problem, U Stuttgart 2016
  • Hirzebruch-Flächen - Konstruktion und Untersuchung einer symplektischen Mannigfaltigkeit, WWU Münster, 2014
  • Symplectic toric manifolds, LMU München, 2010

State Examination / B.A. / M.Ed.

  • Die Sätze von Desargues und Pappus in der projektiven Geometrie, U Stuttgart, 2021
  • Platonische Körper in der Theorie und Praxis, U Stuttgart, 2020
  • Neuronale Netze und Gröbnerbasen, U Stuttgart, 2019
  • Die Picard- und Jacobi-Varietät einer Riemannschen Fläche, U Stuttgart, 2019
  • Public-Key Kryptographie, WWU Münster, 2014
  • Elliptische Kurven über endlichen Körpern, WWU Münster, 2014
  • Das Gruppengesetz einer kubischen Kurve, WWU Münster, 2014
  • Die Grad-Genus-Formel, WWU Münster, 2014
  • Minimalflächen und harmonische Abbildungen, WWU Münster, 2013

University of Stuttgart

WWU Münster

  • Scalar Curvature and Minimal Surfaces (ST 15)
  • Differential Geometry 1 (WT 14/15)
  • Geometric Variational Calculus (ST 14)
  • Mathematical Foundations of String Theory (ST 13)
  • Geometric Analysis (WT 12/13)
  • Holomorphic Vector Bundles (ST 12)
  • Riemann Surfaces (ST 11)
  • Complex Geometry (WT 10/11)

LMU Munich

  • Yang-Mills-Theory (ST 10)
  • Symplectic Geometry 2 (WT 09/10)
  • Symplectic Geometry 1 (ST 09)
To the top of the page