This image shows Davide Cesare Veniani

Davide Cesare Veniani

Priv.-Doz. Dr.

Postdoctoral Assistant
Institute for Discrete Structures and Symbolic Computation
Chair for Differentialgeometry

Contact

Pfaffenwaldring 57
70569 Stuttgart
Deutschland
Room: 7.351

Office Hours

+++ Printout Habilitation +++

 

By appointmnet: online or in room 7.351, 7th floor, Pfaffenwaldring 57.

Interview with Dr. Veniani

Subject

My research field is Algebraic Geometry.

Research interests

  • Algebraic surfaces, especially K3 and Enriques surfaces.
  • Irreducible holomorphic symplectic manifolds (aka compact hyperkähler manifolds).
  • Integral quadratic forms (lattices).

Preprints

  • Luca Giovenzana, Annalisa Grossi, Claudio Onorati, Davide Cesare Veniani, Symplectic rigidity of O'Grady's tenfolds, submitted, arXiv:2206.11594 (2022).
  • Gebhard Martin, Giacomo Mezzedimi and Davide Cesare Veniani, Enriques surfaces of non-degeneracy 3, submitted, arxiv:2203.08000 (2022).
  • Simon Brandhorst, Serkan Sonel and Davide Cesare Veniani, Idoneal genera and K3 surfaces covering an Enriques surface, submitted, arXiv:2003.08914 (2020).

Peer-reviewed papers

  • Gebhard Martin, Giacomo Mezzedimi, Davide Cesare Veniani, On extra-special Enriques surfaces, Math. Ann. (2022). doi:10.1007/s00208-022-02459-9
  • Dino Festi and Davide Cesare Veniani, Counting elliptic fibrations on K3 surfaces, to appear in J. Math. Soc. Japan, arXiv:2102.09411 (2021).
  • Annalisa Grossi, Claudio Onorati and Davide Cesare Veniani, Symplectic birational transformations of finite order on O'Grady's sixfolds, to appear in Kyoto J. Math., arXiv:2009.02120 (2021).
  • Dino Festi, Davide Cesare Veniani, Enriques involutions on pencils of K3 surfaces, Math. Nachr. (2022), 1–15. doi:10.1002/mana.202100140
  • Davide Cesare Veniani, Lines on K3 quartic surfaces in characteristic 3, Manuscripta Math. 167 (2022), 675–701. doi:10.1007/s00229-021-01284-9
  • Ichiro Shimada and Davide Cesare Veniani, Enriques involutions on singular K3 surfaces of small discriminants, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) XXI (2020), 1667-1701. doi:10.2422/2036-2145.201902_004
  • Davide Cesare Veniani, Symmetries and equations of smooth quartic surfaces with many lines, Rev. Mat. Iberoam. 36(1) (2020), 233–256. doi:10.4171/rmi/1127
  • Alessandro Chiodo, Elana Kalashnikov and Davide Cesare Veniani, Semi-Calabi–Yau orbifolds and mirror pairs, Adv. Math. 363 (2020), 106998, 46 pp. doi:10.1016/j.aim.2020.106998
  • Davide Cesare Veniani, Lines on K3 quartic surfaces in characteristic 2, Q. J. Math. 68(2) (2017), 551–581. doi:10.1093/qmath/haw055
  • Samuel Boissière, Alessandra Sarti and Davide Cesare Veniani, On prime degree isogenies between K3 surfaces, Rend. Circ. Mat. Palermo, II. Ser 66 (2017), 3–18. doi:10.1007/s12215-016-0270-x
  • Davide Cesare Veniani, The maximum number of lines lying on a K3 quartic surface, Math. Z. 285(3) (2017), 1141–1166. doi:10.1007/s00209-016-1742-6
  • Fall 2020: lecture course in Gropus, Algorithms, Geometries & Applications B, Universität Stuttgart.
  • Spring 2020: teaching assistant for Höhere Mathematik 1/2, Universität Stuttgart.
  • Fall 2019: teaching assistant for Höhere Mathematik 3, Universität Stuttgart.
  • Fall 2018: teaching assistant for Number Theory, Johannes Gutenberg-Universität Mainz.
  • Spring 2018: reading course in Algebraic Geometry, Johannes Gutenberg-Universität Mainz.
  • Fall 2017: reading course in Algebraic Geometry, Johannes Gutenberg-Universität Mainz.
  • Spring 2017: reading course in Algebraic Geometry, Johannes Gutenberg-Universität Mainz.
  • Fall 2016: reading course in Algebraic Geometry, Johannes Gutenberg-Universität Mainz.
  • Fall 2016: teaching assistant for Galois Theory, Johannes Gutenberg-Universität Mainz.
  • Spring 2016: teaching assistant for Mathematics for Engineers II, Leibniz Universität Hannover.
  • Fall 2014: teaching assistant for Algebraic Geometry I, Leibniz Universität Hannover.
  • Fall 2013: teaching assistant for Modular Forms, Leibniz Universität Hannover.
To the top of the page