

Übungsblatt 2

Aufgabe 1 (Eigenschaften von $\mathcal{O}(Y) \to \mathcal{O}(X)$).

Sei $f: X \to Y$ eine nicht-konstante holomorphe Abbildung und

$$f^* \colon \mathcal{O}(Y) \to \mathcal{O}(X)$$
, $f^*(\varphi) := \varphi \circ f$.

Zeigen Sie, dass f^* ein Ringmonomorphismus ist.

Aufgabe 2 (Bild holomorpher Abbildungen).

Seien p_1, \ldots, p_n Punkte auf der kompakten riemannschen Fläche X und sei

$$f: X \setminus \{p_1, \dots, p_n\} \to \mathbb{C}$$

eine nicht-konstante holomorphe Funktion. Zeigen Sie, dass das Bild von f dicht in $\mathbb C$ liegt.

Aufgabe 3 (Automorphismen von \mathbb{P}^1).

(a) Sei

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}(2, \mathbb{C}) \,.$$

Zeigen Sie, dass die Möbiustransformation

$$f(z) := \frac{az+b}{cz+d},$$

welche holomorph auf $\{z \in \mathbb{C} : cz + d \neq 0\}$ ist, zu einer meromorphen Funktion auf \mathbb{P}^1 erweitert werden kann. Zeigen Sie ferner, dass $f : \mathbb{P}^1 \to \mathbb{P}^1$ biholomorph ist, d. h. f ist ein Automorphismus von \mathbb{P}^1 .

(b) Zeigen Sie umgekehrt, dass jede biholomorphe Abbildung $f: \mathbb{P}^1 \to \mathbb{P}^1$ durch eine Möbiustransformation gegeben ist.

Aufgabe 4 (Weierstraß'sche \(\rho\)-Funktion).

Sei $\Lambda \subset \mathbb{C}$ ein Gitter. Die Weierstraß'sche \wp -Funktion bezüglich Λ ist definiert durch

$$\wp_{\varLambda}(z) := \frac{1}{z^2} + \sum_{\omega \in \varLambda \backslash \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

(a) Zeigen Sie, dass \wp_{Λ} eine doppelt-periodische meromorphe Funktion bezüglich Λ ist, welche Pole in allen Punkten von Λ hat.

Hinweis: Betrachten Sie die Ableitung

$$\wp'_{\Lambda}(z) = -2\sum_{\omega \in \Lambda} \frac{1}{(z-\omega)^3}.$$

(b) Sei $f \in \mathcal{M}(\mathbb{C})$ eine doppelt-periodische Funktion bezüglich Λ , welche ihre Pole in Punkten von Λ hat und welche die folgende Laurent-Entwicklung um den Nullpunkt hat:

$$f(z) = \sum_{k=-2}^{\infty} c_k z^k$$
, wobei $c_{-2} = 1$, $c_{-1} = c_0 = 0$.

Zeigen Sie, dass $f = \wp_{\Lambda}$.