

Übungsblatt 1

Aufgabe 1 (die Cauchy-Riemann-Gleichungen).

Sei $f \in C^1(U)$. Zeigen Sie:

- (a) $df = \partial_z f dz + \partial_{\bar{z}} f d\bar{z}$.
- (b) f ist genau dann holomorph, wenn $\partial_{\bar{z}} f = 0$ gilt.
- (c) f ist genau dann holomorph, wenn die Jacobi Matrix J(f) von f komplex linear ist.

Hinweis: Schreiben Sie die lineare Abbildung $z \mapsto iz$ für $z \in \mathbb{C}$ als Matrix $I: \mathbb{R}^2 \to \mathbb{R}^2$. Somit heißt $J(f): \mathbb{R}^2 \to \mathbb{R}^2$ komplex linear, wenn $I \circ J(f) = J(f) \circ I$ gilt.

Aufgabe 2 (komplexe Differenzierbarkeit).

Seien $f,g\in\mathcal{O}(U)$. Zeigen Sie anhand des $\partial_{\bar{z}}$ -Kalküls bzw. der Cauchy-Riemann-Gleichungen:

- (a) $f + g \in \mathcal{O}(U)$ und $f \cdot g \in \mathcal{O}(U)$.
- (b) Ist $g(z) \neq 0$ für alle $z \in U$, so gilt $\frac{f}{g} \in \mathcal{O}(U)$.
- (c) Für $h \in \mathcal{O}(V)$ und $h(V) \subseteq U$ gilt $f \circ h \in \mathcal{O}(V)$.

Aufgabe 3 (der Ring holomorpher Funktionen für Gebiete).

Zeigen Sie, dass die Menge $\mathcal{O}(D)$ über dem Gebiet D einen Integritätsbereich definiert.

Aufgabe 4 (meromorphe Funktionen).

Es bezeichne $\mathcal{M}(D)$ die Menge der meromorphen Funktionen auf dem Gebiet D. Für $f \in \mathcal{M}(D)$ sei $\mathcal{Z}(f)$ die Nullstellenmenge von f. Zeigen Sie:

- (a) f ist genau dann eine Einheit in $\mathcal{M}(D)$ (d. h. es existiert ein $g \in \mathcal{M}(D)$ mit $f \cdot g = 1$), wenn $\mathcal{Z}(f)$ diskret in D ist.
- (b) $\mathcal{M}(D)$ ist ein Körper bezüglich punktweiser Addition und Multiplikation.