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ABSTRACT. It is well-known that a complex polynomial f € C[z] —an algebraic
object — is determined up to scalars in C* by its zero locus, the n zeroes
(counted with multiplicity) in C — a geometric object. This is the simplest
instance of an equivalence between an algebraic and a geometric category. To
make this statement rigourous will occupy us in the first half of this lecture.
In the second half we use algebraic methods to deduce elementary properties
of the geometric objects under investigation.
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0. BASIC COMMUTATIVE ALGEBRA

To keep the prerequesites to a minimum (as covered by the basic algebra courses
LAAGTI & IT and Algebra, see for instance also the books by S. Bosch, Linear algebra
and Algebra, Springer) we will develop the necessary background of commutative
algebra as we go along. This text is essentially taken from

(i) M. Atiyah and I. MacDonald, Introduction to Commutative Algebra, Addison-
Wesley;
(ii) D. Eisenbud, Commutative algebra, Springer;
(iii) A. Gathmann, Commutative Algebra, available at
mathematik.uni-kl.de/agag/mitglieder /professoren/gathmann/notes/;
(iv) M. Reid, Undergraduate Commutative Algebra, Cambridge University Press.

No claim of any originality in the presentation of this material is made. Commuta-
tive algebra is a theory interesting in its own right with various ramifications, see
for instance [Rel, Chapter 0.8] or [Ei, Chapter 1.1]. Here, of course, we are going to
stress the geometric side of the theory.

0.1. Rings and ideals.

Basic ring theory. Unless mentioned otherwise, rings will be commutative and
with unit 1. We denote rings generically by A. A (ring) momorphism ¢ : A — B
is assumed to satisfy ¢(14) = 1p. A subring of a ring shares the same identity
element. Note in passing that we usually only speak of a morphism and leave it to
the context whether it is a morphism of rings, modules, varieties etc. A field is ring
in which 1 4 0 and every nonzero element is a unit. If A and B are rings, the direct
product A x B is the set of pairs {(a,b) | a € A, b € B} with componentwise addition
and multiplication. In particular, if we consider A and B as subsets of A x B via
the embedding @ — (a,0) and b — (0,b), then A- B =0 on A x B. Note in passing
that A and B embedded this way are mot subrings for their respective identity
elements are e; = (1,0) and ez = (0,1) and thus different from (1, 1), the identity
element of A x B. Rather, they form a complete set of orthogonal idempotents, in
the sense that they satisfy e? = e; (idempotency), ejea = 0 (orthogonality) and
e1 + ea = 1 (completeness). In general, if e1,..., e, is a complete set of orthogonal
idempotents in a ring A, then A =~ Ae; x ... x Ae,. If A; is an infinite family of
rings we distinguish between the direct product X A; and the direct sum @ A;.
For the latter, there are only a finite number of nonzero components. For a finite
number of rings both notions coincide.

A zerodivisor x € A divides 0, i.e. there exists y € A\0 such that zy = 0. An
element x € A is nilpotent if " = 0 for some n. In particular, x is a zerodivisor if
A £ 0. A nontrivial ring A is integral if A has no zerodivisors, e.g. A = Z. Recall
in passing that an integral ring has a field of fractions k = Quot A, for instance
Q = QuotZ. An element x € A is invertible or a unit if it divides 1, i.e. there
exists y € A such that xy = 1. Units forms a multiplicative subgroup of A which
we denote by A*. For example, if x € A is nilpotent, then 1 — x is invertible in A,
for (1 —xz) 'Z:':()l x=1.

For an integral domain A we say that a nonzero nonunit element x € A is irreducible
if z = yz for y, z € A implies that either y or z is a unit. Further, a nonzero nonunit
x is called prime if z|yz (z divides yz) implies either z|y or z|z. Prime obviously
implies irreducible, but the converse is false in general. An integral domain A is
said to be a unique factorisation domain (UFD for short) if every a € A\(A* U {0})
admits a prime decomposition a = aq - ... - a, into primes which is unique up to
order and units. Note that if A is a UFD, then x € A is irreducible if and only
if it is prime [Bol, 2.4.10]. Examples are provided by Euclidean rings such as Z,
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k[z]. Further, by Gaufy’ Theorem, the polynomial ring A[z] is a UFD if A is a
UFD [Bd, 2.7.1]. In particular, the polynomial rings k[X1,...,X,] are UFDs. For
the following exercise, recall that a polynomial f € A[z] is monic if its leading
coefficient is 1, i.e. f =™ + Y7 aa’.

1. Exercise (roots of monic polynomials). Let A be a UFD and k = Quot A
its field of fractions. If f € Alx] is monic and has a root « € k = a € A.

Proof. Assume o ¢ A. Write a = p/q, where p and ¢ have no common factors in
A. This is possible since A is a UFD. If ¢ is a unit, then a € A so assume that ¢ is
not a unit. If f = 2™ + > a;2%, then by assumption, p" = —ZZL___Ol a;p'q™ %, hence
q | p*. Decompose q = []¢; into irreducible factors. Then ¢; | p™ = p"~!p. Since
¢1 is prime it divides either p or p"~'. In the second case we can continue until

also q1 | p. Contradiction, for ¢ and p have no common factors. O

If a number z divides a and b, then x also divides their sum. This leads to the
notion of an ideal a of A. By definition, this is an additive subgroup such that
xa € a whenever z € A and a € a. If ¥ © A is a subset, we write

(E)={Z xiai|xieA7aie§]}
finite
for the ideal generated by Y. Geometrically, ideals arise as follows. If X < k™,
and f and g are two polynomials in k[z1,...,2,] which considered as polynomial
functions vanish on X (i.e. f(x) = g(z) = 0 for all z € X), then so does their sum
f + g. Further, if h is any other polynomial, h - f also vanishes on X. In other
words,
I(X)={feklz,...,xn] | f(x) =0 for all x € X}

is an ideal. This notion gains its importance from the fact that if a is an ideal, then
the group quotient A/a inherits a natural ring structure and becomes the so-called
quotient Ting. In this sense, an ideal is the ring analogue of a normal subgroup
of a group. An important example of ideals are kernels ker ¢ of ring morphisms
¢ : A — B. Note in passing that the image im ¢ is merely a subring and not an
ideal in general; we have a natural ring isomorphism im ¢ =~ A/ ker ¢.

2. Proposition. For a ring A £ {0}, the following properties are equivalent.
(i) A is a field;

(i) the only ideals in A are {0} = (0) and A = (1);

(iii) every morphism of A into a nonzero ring is injective.

Proof. For (i)=>(ii) we note that any nonzero ideal in a field k contains a unit and
is thus equal to k. For (ii)=>(iii) we note that 1 & 0 (otherwise (0) = (1)) so that
any homomorphism A — B #+ {0} is nontrivial (it maps 14 to 1p). Hence its
kernel must be (0) whence injectivity. Finally, for (iii)=-(i) we assume that x € A
is nonunit. Then (x) < (1) = A so that B := A/(z) is a nontrivial ring. However,
the canonical projection A — B is injective, whence (z) = 0. O

In a field k, all ideals are of the form (z) = {X ;1. a;x' | a; € k}. More generally,
an integral domain for which this is true is called a principal ideal domain (PID).
This is slightly less general than the notion of a Euclidean ring where the Euclidean
algorithm can be used to perform divisions with remainder. We have the following
implications: A Euclidean = PID = UFD = integral domain. Prime examples of
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Euclidean rings are Z or the polynomial rings k[x] where k is a field (this essentially
accounts for their similarity). Note that for more than one variable, k[z1, ..., 2]
is factorial, but not principal.

Maximal and prime ideals. An ideal m of A is mazimalifm + Aandmcac A
implies either m = a or m = A. In particular, A is a field if and only if (0) is
maximal. An ideal p & A is prime if ab € p implies a € p or b € p. In particular, A
is integral if and only if the ideal (0) is prime.

3. Examples.

(i) Let k be a field and A := k[z1,...,z,]. If f € A is irreducible, then the ideal
generated by f, (f) ={gf | g € A}, is prime by unique factorisation.

(ii) The prime ideals of Z are precisely of the form (p) for p € Z prime. In fact,
this is true for a general ring: p € A is prime <> (p) is prime. The same is
true for (i) if n = 1; , but for n > 1, A is no longer principal as we are going
to see later.

(iii) In a PID, every nontrivial ideal is maximal. Indeed, let (a) + 0 be a prime
ideal and assume (b) o (a), that is a € (b), or equivalently, a = xzb. Then
either b € (a) and we have equality, or = € (a), that is * = ya. But then
a = yba, that is, yb is a unit, so that (b) = A.

Existence of maximal ideals is a standard application of Zorn’s lemma (see for
instance [Rel Chapter 1.7 and 1.8]). In fact, one can show that any proper ideal of
A is contained in some maximal ideal. It follows in particular that any nonunit of A
is contained in some maximal ideal so that for any ring A we have a decomposition
A = A* U |Jm, where the union is taken over all maximal ideals. More generally,
if S © A is a multiplicative subset, any ideal disjoint from S is contained in some
prime ideal in A\S [Rel, Section 1.9]. (Recall that a subset S < A is multiplicative
if 1e Sand f, g €S implies fg € S.) The following characterisation is classical
B, 2.3.8):

(i) p is prime if and only if A/p is an integral domain;

(ii) m is maximal if and only if A/m is a field.
In particular, a maximal ideal is prime, and every prime ideal is obtained as the
kernel of a homomorphism ¢ : A — k where k = Quot (4/p) is the so-called residue
field.

The set of prime ideals of a ring is obviously a partially ordered set with respect to
inclusion, i.e. p; < po < p1 D po. Minimal elements are called minimal primes.

4. Exercise (Minimal primes). Use Zorn’s lemma to show that any prime ideal
contains a minimal prime.

Proof. Let q be a prime ideal and let X be the set of prime ideals contained in p. If
C c ¥ is a chain {py}rea for some ordered index set A, i.e. py < p, if X > p, then
p =[\px is a prime ideal. Indeed, let ab € p so that ab e py for any Ae A. If a ¢ p,
then there exists Ao such that a ¢ py,, whence a ¢ py any A > Ag. In particular,
b € py for py is prime. Since py, < p, for all u < Ag, b € p so that p € X. By
design, p is a lower bound for C'. Therefore, Zorn’s lemma implies that there exists
a minimal element py € 3. O
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5. Example. Associate with a € k™ the evaluation morphism
evg i k[x1,. .., xn] >k, f— f(a).

Since A/kerev, =~ k is a field, m, = kerev, is a maximal ideal. We show that
m, = (1 — a1,...,%Tn — ay). The inclusion O is obvious. For the other inclusion,
let us first assume a; = 0 and write f = > ¢;y. 4, 27" ... Tlr € m, as

f(‘rlv" .,l’n) = xlgl(zla"'axn) + fg(l’g,...,xn),

where f5(0,...,0) = f(0,...,0) = 0. We can repeat this proces to obtain

fi(xi, Ce ,I’n) = x,gz(:cl, e 71'”) + fi+1(551'+1, e ,.’,En)

with f;411(0,...,0) = 0, whence f = 2191 + ... + Zngn € (€1,...,2,). The general
case now follows from the coordinate change y; = x; — a;.

In fact, any maximal ideal is precisely of this form if k is algebraically closed. This
will be an easy consequence of the

6. Theorem (weak Nullstellensatz). If m is a mazimal ideal in k[z1, ..., 2],
then k < k[z1,...,2,]/m is a finite field extension (see also Appendiz for a recap
on field extensions).

Proof. This is a standard fact from algebra which we will assume for the moment
as its proof (given in [2f36]) requires some additional machinery. O

7. Corollary (points and maximal ideals). Ifk is algebraically closed (as we al-
ways assume unless mentioned otherwise) every maximal ideal m < k[x1, ..., xpy] is
of the formm = (x1—aq,...,xn—ay) fora = (ay,...,a,) € k™. Geometrically, this
means that maximal ideals in k[z1,...,x,] correspond to points a = (ay,...,a,)
in k™.

Proof. Indeed, k ¢ K = k[x1,...,2,]/m is a finite, hence algebraic field extension
of k. Since k is algebraically closed, k = k[z1,...,2,]/m. Compose this isomor-
phism with the evaluation map k[z1,...,2,] = K, f(z1,...,2,) — f(a1,..., )
for o; = the image of z; in K. Since this restricts to the identity on k& we have
x; — a; € m, the kernel of this map. Hence (z1 — a1,...,2, — a,) € m. The
conclusion follows since (x1 — aq, ..., 2z, — a,) is maximal by Example O O

8. Remark. The weak Nullstellensatz has various generalisations (see for in-
stance [Ei, Theorem 4.19]). In particular, we can drop the requirement of alge-
braically closedness of k, where the weak Nullstellsatz reads as follows. The maxi-
mal ideals of k[xz1, ..., x,] are of the formm = (x1—aq,...,xn—ay) Nk[z1,. .., T,]
fora=(a,...,a,) € K™ where k c K is an algebraic field extension, cf. also Ex-
ercise 0@. The point a is in general not uniquely determined. Indeed, if the field
extension k < K is Galois with Galois group G, then two points a and b € K™ give
rise to the same maximal ideal if and only if there is an element o € G such that
o(a) = b (cf. [Re, Exercise 5.7]).

9. Exercise (Evaluation maps in nonalgebraically closed fields). Let k ¢ K
be an algebraic field extension. For a = (ay,...,a,) € K™, consider the evaluation
map evg : k[zy,...,z,] > K.

(i) Determine the image of ev,.

(ii) Show that kerev, is a mazimal ideal.
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(iii) Show that kerev, = (x1 — a1,...,Zn — an) N k[z1,...,2,] (the intersection
taking place in K[z1,...,x,], that is, we consider k[x1,...,2,] as a subring
in Kl[xy,...,x,] and (x1 —aq,..., 2, — ay) as an ideal in K[xzq,...,2,]).

Proof. (i) Imev, = kl[a1,...,a,] = {2?11,’.....',’517;0 Ciyin 0t - oat | ey € kY,

where afiﬂ = 0 (recall that k — K is algebraic).

(ii) As a subring of an integral domain, k[ai,...,a,] has a quotient field which
we denote by k(ai,...,a,) and which lies inside K. By induction on n we see
that k[a1,...,an] = k(a1,...,a,) (n = 1 was just discussed above). By (i),
kla1,...,an] = k[z1,...,z,]/ ker ev, which shows that kerev, is maximal.

(iii) The inclusion > is clear. For the converse, consider ev, as amap K[z1,...,Z,] —
K and let f € kerev, n k[z1,...,2,]. By Corollary O f regarded as an element
in K[z1,...,z,] liesin (z1 —a1,...,2, —ay,), whence f € (x1 —aq,..., 2, —ap) N

klzq,...,2,) O

Local rings. We now come to a key notion in commutative algebra and algebraic
geometry. Despite the definition which looks rather special local rings exist in
abundance, cf. Section [T[I-3]

10. Definition (local ring and residue field). A ring A is local if it has a
unique maximal ideal m. The field k = A/m is called the residue field of A.

Trivial examples of local rings are fields. To get more interesting ones we use the
following

11. Proposition. The following properties on a ring A are equivalent.

(i) A ring A is local with mazimal ideal m;

(ii) all the nonunits of A form an ideal m;

(iii) there exists an ideal m % (1) such that every x € A\m is a unit in A;

(iv) there exists a mazimal ideal m of A such that 1 + m = {1+ x| x € m} < A*.

Proof. (1)« (ii) If A is local with maximal ideal m, then we have a disjoint union
A = A* U m, that is, m is the set of nonunits which therefore form an ideal.
Conversely, any maximal ideal consists of nonunits and must be contained in m by
assumption. Therefore, m is maximal and is the unique ideal with this property.

(i)« (iii) This is a trivial reformulation.

(i)e(iv) If A = A* Um is local with maximal ideal m, then 1+m < A* for 1+mnm
is the empty set. Conversely, let x € A\m. By (iii) we must show that x is a unit.
Since m is maximal, the ideal generated by & and m must be A so that there exists
y € A and m € m with zy + m = 1. By assumption, zy = 1 — m € A* < A\m, thus
x e A*. O

12. Examples. The following examples of local rings are obtained by localisation
which we will explain in fuller detail in Section This is the typical way how
local rings arise in geometry.
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(i) Suppose that one is interested in divisibility in Z by a particular prime, say 5.
Then n is divisible by 5 in Z <> it is divisible by 5 in Z[1/2,1/3,1/7]. Actually,
there is no reason to stop here, so we put

Z<5>:{§e@|5+q}c@.

It follows that 5 {n in Z < n/m € Z) is a unit. The nonunits are thus given
by {p/q € Z¢sy | 5 | p} = 5Z5) which is an ideal. Therefore, Zy and more
generally, Z,) for any prime number p € Z, is a local ring.

(ii) Similarly, we can replace Z by k[z] to get a more geometrically flavoured
example. For instance,

K]y = {g e k() | X 1 g} < k(x)

- {g 1 9(0) 4 0)

which is a local ring with maximal ideal {5 | £(0) = 0}. This example explains
the word ‘localisation’. Indeed, thinking of k[z] as functions on the z-axis,
k[x](z) can be thought of as the ring of rational functions which are defined
near x = 0. The maximal ideal is then given by functions which vanish at
z=0.

(iii) More generally, let p in A a prime ideal of an integral domain, and let

Ayi= (L e Quota g ¢ )

One easily checks that this is a ring whose set of nonunits {f/g | f € p, g ¢ p}
is an ideal. In particular, Ay = Quot A.

Radical ideals. In k consider the zero locus Z(f) = {0} of f(z) = 2% Any
polynomial g € (f) also vanishes on Z(f). Further, so does p(z) = x, but p ¢
(f). Intuitively, the equation f = 0 which defines Z(f) is not of minimal degree.
However, p? € (f). This phenomen leads to a key notion in algebraic geometry:

13. Definition (radical ideal, nilradical, reduced ring). Let a € A be an
ideal. Its radical is

Va:={ae A|a" € a for some n}.
We obviously have a < 4/a. If equality holds we call a a radical ideal. Further,
we call
nil A := +/(0) = {x € A | 2" = 0 for some n € N}

the nilradical of A. By definition, this is the set of nilpotent elements of A. If
nil A = 0, then A is called reduced.

14. Remark. In general, consider an ideal a < k[z1,...,z,]. Subsets of the form
Z(a) ={ae€ k™| f(a) = 0 for all f € a} are called algebraic sets. As the example
before the definition shows, a € Zo Z(a), but the inclusion might be strict. In fact,
Hilbert’s Nullstellensatz states that Z o Z(a) = 4/a.

15. Lemma (quotient ring characterisation of radical ideals). The radical
of an ideal is itself an ideal. Furthermore, a is radical < A/a is reduced.
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Proof. To show that 4/a is an ideal we first note that it is closed under multiplica-
tion. if a € 4/a so that a™ € a, and z € A, then (xa)" = x"a™ € a for a is an ideal.
Further, 0 € v/a, and if a, b € a, then (a + b)?* = Zle c2Fa'b? =t € a for k such
that a* and b* € a. Here, c%k are the standard binomial coefficients. Again, since
a is an ideal, this sum is in a. Next, let T denote the equivalence class of z € A in
Ala.

=) If € A/a is nilpotent, then there exists n € N such that 2" = 0, i.e. 2™ € a.
Hence = € /a which is a by assumption, so Z = 0.

<) If z € \/a, i.e. 2™ € a, then also Z" = 0 in A/a. Since the quotient ring is
assumed to be reduced, £ = 0, whence x € a. O

16. Proposition (Nilradical and prime ideals).

nild= (] p

pcA prime

Put differently, f € A is not nilpotent < there is a prime ideal p < A such that
fép

Proof. <) If f is nilpotent it belongs to every prime ideal for 0 = f* = f"~"1fep
etc.

=) Let f € A be not nilpotent. Consider the multiplicative subset S = {1, f, f2,...}
of A generated by f. Since f is not nilpotent, 0 ¢ S so that S (0) = &. By 0
we know that there is a prime ideal which does not intersect S. O

17. Corollary (radical ideals and prime ideals). If a ¢ A is radical =

a= N »

acp prime
In particular, v/a =, prime P for any ideal a of A.

Proof. Just apply the previous proposition to A/a and recall that for any surjective
morphism p : A — B = p(A) (and in particular, for B = A/a), thereisa 1 —1
order preserving correspondence between ideals a containing ker p, and ideals b in
p(A) provided by p~1(b). O

18. Corollary (rings with zerodivisors). If A is a ring with zerodivisors, then
either A is not reduced, or it has more than one minimal prime ideal.

Proof. Indeed, assume that nil A = [|p = (0), where the intersection is taken over
all prime ideals, cf. Proposition Now any prime ideal contains a minimal one
(a consequence of Zorn’s lemma, since the intersection of prime ideals in a prime
ideal is again prime), so we can restrict the intersection to minimal primes in A.
If there is only one minimal prime pg, then (0) = (p = po and A is an integral
domain, a contradiction. O

More generally, we can define v/E in the same way for any subset £  A. Of
course, v/ F is no longer an ideal in general. For later use we note the following

19. Proposition.
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(i) v/U; Ei = J; VE; for any family of subsets E;.

(ii) Let ann(x) = {a € A | a-x = 0} denote the annihilator of = in A. then

D = the set of zero-divisors of A = |J,4(+/ann (z).

Proof. (1) Straightforward.

(ii) We need to show D = v/D. Indeed, if ™ € D, then there exists 0 + x € A such
that 2-a" = x-a-a"! = 0. Hence, either z-a = 0 and thus a € D, or a® ! € D.
After a finite number of steps, a € D. O

In the same way, we can also consider the intersection of all maximal ideals.

20. Definition (Jacobson radical). The Jacobson radical J(A) of a ring A is
the intersection of all maximal ideals. of A.

By Remark 0[23] below this is indeed a radical ideal. It can be characterised as
follows:

21. Proposition. z € J(A) < 1 — zy is a unit in A for all y € A.

Proof. =) Suppose that 1 —zy is not a unit. Then it is contained in some maximal
ideal m. Since z € J(A) € m, zy € m and thus 1 € m, a contradiction.

<) By contraposition. Suppose = ¢ m for some maximal ideal. Then (m,z) = A by
maximality of m, hence m + yx = 1 for some m e m and y € A. Hence m =1 — zy
is not a unit. U

Operations on ideals. If a and b are two ideals of A, the following operations
give new ideals.

(i) The sum is the ideal defined by
a+b:={a+blacaandbeb} = (aub)

(check the latter identity!). It is the smallest ideal containing a and b. Simi-
larly, >, a; consists of elements of the form ), a; with a; € a; all of which are
zero but a finite number.
(ii) The intersection a n b is again an ideal, while the union is not, in general.
(iii) The product is the ideal defined by

a-b:={a-blaca, beb}).

Similarly, we can define the product of a finite number of ideals. In particular,
we have the powers a” of an ideal (with the convention a = (1). Thus a” is
the ideal generated by all products x1 - ... - x, with z; € a.

(iv) The quotient is the ideal defined by

b:a:={reA|zacb}
As usual, we often write simply x for the principal ideal () generated by x.
In particular, if a = (a) and b = (ab), then b : a = ab: b = (b) if a is not a
zerodivisor. In particular, 0: b = {z € A | b = 0} is called the annihilator

of b in A and is also written ann (b). Note that ann (z) = ann ((z)) so that
the notation is consistent with the one introduced in Proposition 0[T9]

22. Examples.
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(i) f A =727Z,a = (m)and b = (n), then a + b = (g.c.d.(n,m)); anb =
(l.eem.(n,m)); and ab = (nm). Thus a-b = anb < m, n are coprime.
Similar statements are true in any principal ideal domain.

(i) Let a = (21,...,7,) € A = k[x1,...,2,]. Then a” is the set of polynomials
with no terms of degree < k.

23. Remark. We have the following properties which can be checked by direct
computation.

(i) Sum, intersection, and product are all commutative and associative.

v) ac (a:b).
(vi) (a:b)bca
(vii) ((a:b6):¢c)=(a:bc)=((a:c):b)
viii) (), @i :b) =[);(a; = b).
(ix) (a:>3;b6;) =();(a:b;).

(xii) v/a= (1)< a=(1).
xiii a+b=4/4a+ Vb.
xiv) If p is prime, /p™ = p for all n > 0.

24. Proposition (union of primes and primes as intersection).

(i) Let by,...,b, be ideals of which at most two are not prime. If a < | Jb; =
a c b; for some i.

(ii) Let ay,...,a, be ideals, and let p be a prime ideal containing (a; = a; < p
for some i. If p = (\a;, then a; = p.

Proof. (i) We do induction on n the number of sets in the union. If n = 1 there
is nothing to prove so assume n = 2. If a is contained in any smaller union then
we are done. Otherwise, there exists two elements a; € b; such that a; ¢ by and
as ¢ by. But then ay + as ¢ b;, i = 1, 2, contradiction!

We may thus assume that n > 3 and that the result has been proven for n < 2. In
particular, we have at least one prime ideal in the union, say b;. If a is contained
in any smaller union we are done by the induction hypothesis. If not, then for
all 7 there is z; € a such that x; € b; if and only if j = 4. But then the element
T =1T1+T2-... Ty is not in any b, for if z € by, then z5-... -z, € b; and thus some
x € by for k > 1, a contradiction. If z € b;, 4 > 2, thenz; =x — 25 -... -z, € b;,
again a contradiction.

(ii) Proof by contraposition. Suppose a; ¢ p for all i. Then there exists z; € q;

with z; ¢ p, and thus xy - ... -z, €ay -...-a, <[ )a;. However, zy - ...z, ¢ p for
p is prime so that (|a; ¢ p. Finally, if p = ()a;, then p < a;, whence p = a; for
some 1. [l

25. Exercise (Reduced rings with finitely many primes). Let A be a reduced
ring with finitely many distinct minimal primes p;, i =1,...,n =

A—®;A/p;, a— (amodpy,...,amodp,)
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s an injection. Furthermore, the image has nontrivial intersection with every sum-
mand.

Proof. Assume that (amodpq,...,amodp,) = 0. Then a € (),;p = ()p, where
the intersection is taken over all primes (here we use the minimality). Since (\p =
nil A = {0} (here we use that A is reduced), a = 0. Hence the map is injective. Now
let i € {1,...,n}. We must show that there exists a € A such that amod p; # 0, but
amodp; = 0 for j # i. Assume that this is not the case. Then for all a € ﬂj#i Py
amodp; = 0, i.e. a € p; so that ﬂj*i p; < p;. By Proposition 0 there exists
j = 4 with p; < p;, and thus p; = p; by minimality. Contradiction! O

Ideals under morphisms. Next we investigate the behaviour of ideals under
ring morphisms ¢ : A — B. Such a morphism can be factorised as

A f(A) 5 B,
o it is enough to understand what is happening for surjective and injective maps.

First we consider the surjective case, i.e. morphisms of the form 7 : A — 7(4) ~
A/a for an ideal a ¢ A. We have already used in Corollary 0 the 1 — 1 order
preserving correspondence between ideals a containing ker p, and ideals b in 7(A)
provided by 7=1(b). Moreover, if a is a radical /prime/maximal ideal, and if b < a is
an ideal, then a/b is radical /prime/maximal in A/b as follows from the isomorphism
(A/6)/(a/b) =~ A/a.

Now some general observations. The inverse image under ¢ of an ideal b in B is
always an ideal. However, the image under ¢ of an ideal a is usually no longer

an ideal as the example of the inclusion Z — Q shows (take any nonzero ideal
(m) c Z).

26. Definition (extension and contraction of an ideal). If a is an ideal in A,
then the ideal a® := (¢(a)) in B generated by the image of a is called the extension
of a (under ). Explicitly, a® = {34 ... biv(a;) | a; € a, b; € B}. Further, we call
the ideal b° = ¢ ~1(b) the contraction of b (under ().

27. Remark. The contraction of a maximal ideal need not be maximal again.
However, the contraction of a prime ideal is prime again, while the extension of a
prime ideal is not prime in general

28. Examples.

(i) For an integral domain A, consider the inclusion A — k = Quot A. As a
field, k has only two ideals, (0) and k. Their respective contractions in A are
(0) and A respectively. Note that (0)¢ is no longer maximal, but still prime.
Conversely, let a € A be an ideal in Z. Then unless p = (0), p¢ = Quot A.

(ii) If A — A[z] is the classical inclusion of A into its polynomial ring, and a is
an ideal of A, then its extension with respect to this inclusion is given by

afz] :==a- Alz] = {Z a;z' | a; € a}.

Another way of understanding a[z] is to consider the natural projection map
Alz] — A/a[z]. Its kernel is precisely a[z] which also implies that A[z]/a[z] =~
(A/a)[z]. In particular, if a = p is a prime ideal in A, then so is p[z] in A[z]
for (A/p)[z] is integral.
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The following example is classical.

29. Example from algebraic number theory. Consider Z — Z[i], where
Z[i] = {a+1ib| a, b € Z} is the ring of Gaussian integers (this is a Euclidean ring).
The extension of a prime ideal (p) of Z may or may not stay prime. Indeed, there
are three cases to consider:

(i) (2)¢ = ((1 +)?), which is the square of the prime ideal (1 + ) in Z[i];

(ii) if p = 1mod4, then (p)¢ is the product of two distinct prime ideals (for

example, (5)¢ = (2 +14)(2 —i);

(iii) if p = 3mod 4, then (p)®© is prime in Z[7].

This yields all prime ideals of Z[i].

30. Exercice (Extensions and Contraction of ideals). Letyp: A — B a
ring morphism. Then
(i) a < a® and b D b;
(11) b¢ = b°C and a¢ = aece;
(iii) if C is the set of contracted ideals in A and if € is the set of extended ideals
in B, then C ={a|a®“ =a}, £={b]| b =b};
(iv) a— a® is a bijective map of C onto £, whose inverse is b — bC.

Proof. Direct computation. O

Spectra.
31. Definition (spectrum of a ring). The (prime) spetrum of a ring A is
defined by

Spec A = {p A | p is prime in A}.
One sometimes also considers the maximal spectrum mSpec A consisting of max-
imal ideals only.

32. Examples.

(i) A ring k is a field « (0) is maximal. Hence mSpeck = Speck = {0}. More
generally, mSpec k[z1,...,2,] = k" for a field k by Corollary 0[7]

(ii) SpecZ = {(0),(2),(3),(5),...} while SpecZ][i] consists of the following types
of prime ideals (cf. Example 029) (0), (1 +4) = (1 — ), p® if p = 3mod4
(the extension being taken with respect to the inclusion Z — Z[i]), and prime
ideals q such that qq = (p)© for p = 1 mod 4.

(iii) If k is a (not necessarily algebraically closed) field, then k[x] is Euclidean. In
particular, a nontrivial ideal p = (f) in k[z] is prime < f is irreducible, that
is,

Speck[z] = {(0)} u {(f) | f irreducible}.

For instance, we find for £ = R that f is irreducible if and only if up to units,
f=xz—aor f=(x—2)(x—2) = Rlz] n(z— 2) for z € C\R. Hence
SpecR[z] = {(0)} R U {z € C|imz > 0}. If, in addition, k is algebraically
closed, then irreducible polynomials are up to units of the form x —a for a € k
so that in this case, Spec k[z] = {(0)} U k. Note that mSpec k[z] = k can be
thought of as the set of points of k. For the geometric interpretation of the
trivial ideal (0), see Exercise 0[38

(iv) Let a A be an ideal. By what we said before Definition 0[104] Spec A/a =
{p e Spec A | a c p}.



ALGEBRAIC GEOMETRY 1 & 2 13

(v) Let k be a not necessarily algebraically closed field. We think of k[z,y] as
(k[«])[y]- Then the prime ideals of k[, y] are as follows: (0), (f) for f € k[z, y]
irreducible, and maximals ideals of the form m = (p, g) where p € k[z] is an
irreducible polynomial, and g € k[z,y]| a polynomial such g € (k[z]/(p))[y] is
irreducible. In particular, k[z,y]/m = (k[z]/(p))[y]/(g) is a finite extension
field of k (see Proposition 0[33] below).

(vi) The prime ideals of Z[y] are as follows: (0), (f) for f € Z[z] irreducible,
and maximal ideals of the form m = (p,g) where p € Z is a prime number,
and g € Z[y| a polynomial such g € Fp[y] where F, = Z/(p) is irreducible.
In particular, Z[y|/m = (Z/(p))[y]/(3) = Fply]/(g) is a finite extension field
of F,. Note the similarity between the previous example (think of k[z,y]
as (k[x])[y]) which highlights again the analogy between the Euclidean rings
k[z] and Z (see Proposition 033 below).

The cases (iv) and (v) follow from the following proposition if we put B = k[z]
with K = k(z) = Quot B, and B = Z with K = Q respectively.

33. Proposition. Let B be a principal ideal domain and K its field of fractions
= the prime ideals of the UFD A = B[y] are as follows:
(i) (0);
(ii) (p) for p € A with p prime;
(iii) mazimal ideals of the form m = (p,g) where p € B s irreducible, and g € A
such that g € B/(p)[y] is irreducible.

Proof. Recall that a polynomial f € K[y] for K = Quot B, B a UFD, has a reduced
expression f = afy where a € K and fy € B[y] is primitive, that is, its coefficients
have no common factor in B other than units. GaufS” lemma asserts that the
product of two primitive polynomials is again primitive.

If the prime ideal p in A is principal, then there is nothing to prove. Otherwise we
can assume that p contains two elements f; and fo € A = B[y] with no common
factor in A (since A is a UFD it is enough to pick an irreducible element f; # 0 in
p, and to take f2 € p\(f1))-

Step 1. f1 and fy have no common factors in K|y] > Bly] = A. Assume not.
Write f; = hg; with h, g1 and g2 in K[y], and degh > 0. Consider their reduced
expressions h = ahg, g; = b;7y; with a, by and by € K and hg, v1 and 72 in B[y]
primitive. By Gau$’ lemma, hg7y; is again primitive, so that A = B[y] 3 f; = hg; =
(ab;)(hovy;) implies ab; € B, and similarly, abs € B. Hence hg divides f; and f in
A, a contradiction.

Step 2. The ideal a generated by fi1 and fo has nonzero intersection with B, that
s, (f1,f2) n B % 0. Indeed, K[y] is a PID, and ged(fi, f2) = 1 by the previous
step. Hence there exist g1, go € K[y] such that g1f1 + gofo = 1. If be Bis a
common denominator of the coefficients of g; and go, then bgy and bgs € A = B[y,
whence a 3 bgy f1 + bgafo = b is also in B.

Step 3. Conclusion. If p is a prime of A = B[y]|, then B n p is a prime of B. By
the previous step, Bnp = (p) for p a prime in B (B is a PID!). Now any nontrivial
prime in a PID is maximal so that k, := B/(p) is in fact a field. Moreover, the
natural map A = Bly] — kp[y] obtained by reducing the coefficients mod p is
surjective with kernel given by (p)¢  p (the extension being taken with respect to
the inclusion B < A). Consequently, p corresponds to a prime (and thus maximal)
ideal in k,[y] which must be of the form (g) for a reduced element g € A. Hence
p = (p,g), and p is maximal.
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34. Remark. Note that A/p = (4/(p)°)/(p/(p)¢) = ky[y]/(g) is a finite field
extension of k, = B/(p). Hence, if B = k[z] where k is algebraically closed, any
finite extension of k is just k so that p and ¢ are irreducible polynomials in k[z]
resp. k[y], and therefore linear. In particular, m = (z — a,y — b) for a, b € k.

35. Exercise (Zariski topology of Spec A). For each T < A, let Z(T) < Spec A
denote the set of all prime ideals of A which contain T. Show that
(i) if a is the ideal generated by T, then Z(T) = Z(a) = Z(y/a) and Z(a) =
Spec A/a;
(ii) Z(0) = Spec A and Z(1) = &J;
(iii) if (T3)ier s any family of subsets of A, then

z2(Jm) = z2m);
iel iel
(iv) Z(anb) = Z(ab) = Z(a) u Z(b) for any two ideals a, b of A.
It follows that the sets Z(T') satisfy the axioms for closed sets in a topological space.
The resulting topology is called the Zariski topology of Spec A.

Proof. (i) The only nontrivial inclusion requires to show that for any prime ideal
p, a < p implies y/a < p. Now if a € 4/a, then a™ € a < p for some n. Hence either
a € por a” ! e p. Continuing this way if necessary, we see that a € p after a finite
number of steps. Next we know that the prime ideals in A/a correspond precisely
to the prime ideals of A containing a.

(ii) Clear.

(i) pe Z2(UT:) < T; < p for all 4, whence the assertion.

(iv) Since vab = van b = Vab by Remark 0 the only nontrivial inclusion is
Z(anb) < Z(a) u Z(b). Now by Proposition 0{24] (ii), a n b < p implies a < p or
b < p, whence p e Z(a) U Z(b). O

36. Exercise (Basic open sets for the Zariski topology). For each a € A
let D, denote the complement of Z(a) in Spec A. In particular, D, is open, the
so-called basic open set. Show that

(1) {Ds}aca forms a basis of open sets for the Zariski topology (i.e. any open set
is a union of open sets of the form D, );
( ) Da me :Dab;
iii) D, = & < a is nilpotent;
iv) D, = Spec A < a is a unit;
(v) Do = Dy < +/(a) = +/(b);
) Spec A is quasi-compact (i.e. every open covering of Spec A has a finite sub-
covering).

Proof. (i) This follows from Z(T') = (), Z(a) by taking complements.
(ii) (Dg N Dp)¢ = Z(a) u Z(b) = Z(ab) by (iv) of the previous exercise.
(ili) Do = & < Z(a) = Spec A < a < [ \,cgpec 4 P = nil A by Proposition O

(iv) D, = Spec A < Z(a) = & < a is a unit. (otherwise a would be contained in
some maximal ideal).
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(v) Dy = Dy < Z(1/(a)) = Z(a) = Z(b) = Z(4/(b)). This implies that a prime
ideal p contains 4/(a) < p contains 4/ (b). By Corollary 0 v (a) = ﬂ\/@cp p=
Mymep P = V(0).

(vi) By (i) of this exercise it is enough to consider coverings by basic open subsets,
i.e. Spec A = | JD,,. By (ii) of the previous exercise, Spec A = D1, so [ Z(a;) =
Z\Ja;)) = D1 = . Hence 1 € (a; | ¢ € I), the ideal generated by the a;.
In particular, 1 = Zje] zja; for a finite subset J < I which implies Spec A =

UjeJ Daj' u

37. Remark. We can regard Z as a map which takes subsets of a ring A to subsets
of its spectrum Spec A. Conversely, we can assign to a given subset X — Spec A
the ideal

I(X)=()pc A
peX
These operations are inverse in the following sense, namely
ZoI(X)=X and Zo Z(a)=+/a,

where X = ﬂXCZ(T) Z(T) = Z(Uxczr T) denotes the closure of X, the small-
est closed subset which contains X (cf. also Section in particular Proposi-
tion [118). Indeed, let us show that Z o Z(X) = X. First, if p € X, then Z(X) c p
so that p € Z(Z(X)). Hence X < Z(Z(X)), and since X is closed, we have also
X < Z(Z(X)). Conversely, let Y < Spec A be any closed set containing X. Then
Y = Z(a) for anideal a =« A. If pe X < Y, then a < p so that a < (J,cx b = Z(X).
Then Z o Z(X) c Y; in particular, this is true for Y = X.
For the second identity we note that
ToZ(a)=I({peSpecAlacp})=[]p=+a

acp
by Corollary O and Exercise O (i) which implies that a < p implies v/a < p
(the converse being clear).

38. Exercise (Closure of a point). Show that the closure of the pointp € Spec A,
{p} = Nypep 2(T), is given by Z(p). Conclude that

(i) p is a closed point (i.e. {p} = {p}) < p is mazimal,

(i) ge {p} & pca.
For later use we say that q is a specialisation of p. An everywhere dense point
(e.g. (0)), i.e. {p} = Spec A is called generic.

Proof. (i) and (ii) are easy consequences of the equality {p} = Z(p). The latter
immediately follows from the preceeding remark. O

Note that the assignement A — Spec A is actually a functor between the catgeory
of rings and the catgeory of sets. Indeed, given a ring morphism ¢ : A — B, let

@ : Spec B — Spec A
be the associated map ¢® : Spec B — Spec A which sends p € Spec B to p¢ =
¢~ (p) € Spec A.

39. Exercise (Morphisms of rings and spectra). Let ¢ : A — B be a ring
morphism.
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(i) Show that the associated map ¢® : Spec B — Spec A is well-defined and con-
tinuous with respect to the Zariski topology, i.e. the preimage of a closed set

is again closed in Spec B.
(ii) Compute explicitely the map @ for the three types of prime ideals in Z[i] for

the inclusion ¢ : 7 — 7Z[i].
Proof. (i) By Remark 0[27] the map ¢ is well-defined. We show that for T < A,
()Y Z(T)) = Z(o(T)). For the inclusion c, let p € (¢*)"1(Z(T)), ie. T <
©%(p) = ¢ (p), whence (T) = p(o~t(p)) = p. Therefore p € Z(p(T)). Con-
versely, for the inclusion Z(p(T)) < (¢*)~H(Z(T)), let p € Z(p(T)), i.e. p(T) < p.
Then T < ¢~ 'o(T) = ¢~ (p) = ¢*(p) so that ¢*(p) € Z(T), i.e. p € (¢*) ' (2(T)).
(ii) Obviously, ¢t“((0)) = (0) and ¢*((1 +¢)) = (2). If p € SpecZ][i] is of type (p)°
for p = 3mod4, then %(p) = (p). Similarly, if we are given q and g induced by
p =1mod4, then 1%(q) = 1*(q) = (p), see also Figure 0[I] below. O

(h+i) O Q:” (3) (1) 3-2;)

\\/: \./\ /.\ &f“l(q

/ ./\j\./ l\fc
(1) [3424)

I’ ° o‘_o-\,ﬁj‘ucl

() )Y () 3) () (3)

-_—0

FIGURE 1. The associated morphism ¢ : Spec Z[i] — SpecZ

0.2. Modules. Modules are a natural generalisation of ideals and will play an
important réle in the second half of the course.

Basic examples and properties.
40. Definition (module). An A-module is an Abelian group M with a
multiplication map
AxM—>M, (a,m)—a-m

satisfying

(i) a-(m*tn)=a-mta-n;

(ii)) (a+b)- m=a-m+g-m;

(iii) (ab) -m =a-(b-m);

(iv) 14-m=m
for all a, b € A and m, n € M. If no confusion arises, we simply write am for
a-m. A subset N of M is called a submodule if am + bn € N for all a, b € A,
m, n € N. A morphism between A-modules or simply an A-linear map is a
map satisfying f(am + bn) = af(m) + bf(n) for all a, be A, m, n € N. We write
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End(M) for the set of endomorphisms, i.e. morphisms M — M. More generally,
we can consider the set of linear morphisms Hom(M, N) = {¢ : M — N}.

41. Examples.

(i) Any k-vector space is a k-module.

(ii) Any ring A is an A-module over itself, and its submodules are precisely the
ideals of A.

(iii) Any Abelian group is a Z-module.

(iv) If A = k[z], then an A-module is a k-vector space V together with a linear
mapz:V — V.

(v) Similar to vector spaces, Hom(M, N) is again an A-module if M and N are A-
modules. In particular, Hom(A, M) =~ M, for f € Hom(A, M) is determined
by f(1). Morphisms ¢ : M’ — M and ¢ : N — N’ induce morphisms
¥ : Hom(M,N) — Hom(M’,N) and ® : Hom(M, N) — Hom(M, N’) by
U(f) = forp and &(f) = g o f.

(vi) If A is a subring of B, then multiplication in B makes B into an A-module.
A B-module gives an A-module by restricting multiplication to A.

(vii) As for vector spaces there is a natural notion of sub- and quotient module,
direct sum of modules etc. For example, if f : M — N is a morphism, then
ker f and im f are submodules of M and N respectively, while the cokernel of
f, coker f = N/im f is a quotient module.

42. Proposition (isomorphism theorems). We have the following natural
isomorphisms.

(i) For any A-module morphism ¢ : M — N, im ¢ = M /ker ¢ as A-modules.
(ii) If L ¢ N ¢ M are submodules, then
M/N =~ (M/L)/(N/L).
(iii) If M is a module, and L, N < M are submodules of M, then
(N+L)/L=N/(NnL).

Proof. As in the case of vector spaces, see for instance [AtMa), Proposition 2.1]. O

43. Remark. (ii) can be interpreted as saying that if L is not contained in N,
there are two ways of making sense of N/L. Either we increase N by L by taking
the sum, or we decrease L until it is contained in N. Both ways give the same
result.

Exact sequences. A sequence of modules L 5 M 2 N is called exact if

ima = ker 8. A sequence of the form 0 — L % M % N = 0is called a short
exact sequence (s.e.s. for short).

44. Proposition (split exact sequences). Let 0 — L 5> M LN S0bea
s.e.s. Are equivalent
(i) There exists an isomorphism M =~ L @& N under which a(l) = (1,0) and
B(la n) =n;
(ii) there exists a section of 3, that is, a map 0 : N — M such that foo =Idy;
(iii) there exists a retraction of o, that is, a map p : M — L such that poa = 1d,.

A sequence which admits a section is called a split sequence.
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Proof. (i)=>(ii) or (iii) Obvious.
(ii)=>(i) o is injective, for if o(n1) = o(ng), then ny = foo(ny) = Boo(ng) = na.
Claim: M = a(L) ® o(N). Indeed, let m € M and write

m = (m—a(B(m))) + a(B(m)).

The second term is in o(N) by design. Further, the first term is in ker 8 = im«
which shows that M = «(L) + s(N). To show that the sum is direct, assume that
o(n) € ima = ker 8. Then n = (o(n)) = 0, whence a(L) n o(N) = {0}.

(iii)=>(i) Similar to the previous step. O

45. Remark.

(i) Note that for k-vector spaces, any s.e.s. is split. Put differently, knowing a
subspace L of M and the corresponding quotient M /L determines M com-
pletely. This is false for modules. In fact, the so-called extension problem for
modules asks precisely which A-modules M can occur in an exact sequence
0—>L—>M— N —0given L and N. Of course, the direct sum L@ N is a
trivial extension, but is usually not unique.

(ii) A s.e.s. is in general not split. In fact, a module P is called projective if for
any exact sequence M — P — 0 there exists a section o : P — M.

Still, given a submodule My of M such that a(L) n My = (L) n M and B(M;) =
B(M) we can conclude My = M. More generally, we have the

46. Lemma. If0 - L 5 M LN 0 is a short exact sequence, and My < My
two submodules of M, then

a(L) n My = a(L) n My and B(My) = (Ma) = My = Mo.

Proof. Indeed, if m € Ma, then f(m) € f(Mz) = (My). Hence there is n € M; <
Ms such that S(n) = 8(m), i.e. m —ne My nkerf = Mo na(L) = M; na(L). It
follows that m € Mj. O

S.e.s. often arise from long exact sequences:

47. Exercise (splitting and glueing of exact sequences).
(i) (Splitting) If

a1 a2 as

Ml MQ M3 M4

is an exact sequence of A-modules, then the sequences
aq .
My —— My ——imay = kerag —=0

and
. as
0 ——=keras = imayg —— Mg —— M, ,

where ker « — M3 is the inclusion map, are also exact.
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(ii) (Glueing) Conversely, if we have exact sequences

a1 a2

M, My N 0
and

0 N My —225 My,
where N — M3 is the inclusion map, then the induced sequence

My~ My 22> My —22 M,y
is also exact.
(iii) Conclude that any exact sequence
0 My —2s My -2 M, 2250
can be split up into s.e.s.
0 ker a; M; Y im o 0.

Proof. By direct verification, see also [GaCAl Lemma 4.4 and Remark 4.5] for a
proof. O

There are several natural exact sequences which can be built from morphisms « :
M — N of A-modules. The subsequent lemma is immediate.

48. Corollary (exact sequence of a morphism). Leta: M — N be a
morphism of A-modules. Then there are s.e.s.

0 ——=kera M—2%>ima 0

and

0 im o N cokerao ——=10 .

In particular, glueing yields

0 ker o M-—2>N cokerao —0 .

49. Lemma (snake lemma). Let

0 L—2%sM N 0
ool
0 L 0

be a commutative diagramm of A-modules. Then there exists a sequence

0 ker f —~—>kerg o ker h ——~

ar

coker f &, coker g d coker h 0,

where & and B are restrictions of o and B and & and ' are induced by o/ and B'.
For instance, & ([I']) = [&/(I')] ete.
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Proof. The proof is a routine exercise in diagram-chasing. We just give the defini-
tion of the boundary morphism d : ker h — coker f. For a complete proof as well
as an explanation of the name “snake lemma”, see [GaCAl Lemma 4.7].

If n € ker h < N, then for m € M with S(m) = n (8 is onto), # og(m) = hoB(m) =
0, hence g(m) € ker ' = im«a’. Hence there exists I’ € L’ with o/(I") = g(m), and
we let d(n) = [I'], where [-] denotes the equivalence class in coker f. O

Generating families. Given my,...,m, € M we can consider the submodule
generated by these elements, namely

(my,...,my) =2Ami= {ZaimieM|aieA}cM

More generally, let {my}sca be any set of elements in M. We can define an A-
module morphism

p:@PA->M, @reran— Z axmy.
AEA AeA
Note that the sum is finite since only a finite number of the ay + 0 by definition of
the direct sum of modules.

50. Definition (family of generators and free modules). {m,} is a family
of generators if ¢ is surjective, i.e. we have @, A % M — 0. If the indexing
set A is finite, then M is finitely generated or simply finite. Finally, if ¢ is an
isomorphism, {m}ea is a basis and M is free.

51. Examples (free modules and their submodules and quotients).

(i) A[z] is a free A-module with infinite set of generators (z*);>0. As an A[z]-
module, it is of course free and finitely generated.

(ii) If a is a nontrivial ideal of A, then A/a is never a free A-module, for any map
p: P, A— A/a, (ar) — > axmy has nontrivial kernel since ¢(a,0,...) =0
if a € a. However, A is obviously free as an A-module. It follows that in
general, the quotient of a free module is not free again.

(iii) If A is an integral domain, then a nontrivial ideal a is free < a is principal. In
particular, the submodule of a free module is usually not free again. Indeed,
if a = (a), then ¢ : A — a, x — za is the desired isomorphism. Conversely,
assume that a is free so that we have an isomorphism ¢ : @, A — a defined
by a set of generators. If there were more than one generator, say m; and ms,
then ¢(—mg, my,...) = —mamy + myms = 0. Hence there can be only one
generator, that is, the ideal is principal.

Summarising, if we have a s.e.s. 0 > L — @, A - N — 0, L nor N need to be
free in general.

52. Remark. In the case of a vector space, a basis always exists, either by taking
a generating set of linearly independent vectors or an irredundant generating set.
This, however, fails in the case of modules. Indeed, m = (z,y) in A = k[x,y] is
generated by two linearly independent z and y, but it is not free (cf. (iii) of the
previous example). On the other hand, for M = A = k[z], we have M = (z,1—z).
Here, the generators form an irredundant set of the free module M, but obviously
not a basis.

53. Examples (finitely generated modules and their submodules and
quotients).
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(i) Almost by definition, a finitely generated A-module is of the form A™/ker ¢.

Every ideal of the form a = (mq,...,m,) in A is finitely generated as an
A-module.
(ii) If mq,...,m, is a generating set for M, then so is mq,...,m, for M/N,

where N is some submodule of M. In particular, quotients of finitely generated
modules are again finitely generated.

(iii) By definition, a ring A which is not Noetherian admits an ideal which is not
finitely generated as an A-module (see Section O. Since non-Noetherian
rings exist (for instance k[xz1,xa,...]), the submodule of a finitely generated
module is in general not finitely generated again.

Summarising, if we have a s.e.s. 0 > L — @, A/ker¢ — N — 0, N is finitely

generated, but not L in general.

54. Exercise (finitely generated submodules). Let M be a finitely generated
A-module and ¢ : M — A™ a surjective morphism of A-modules = ker ¢ is finitely
generated.

Hint: Let eq,...,e, be a basis of A™ and choose u; € M such that ¢(u;) = e; for
it =1,...,n. Show that M = ker ¢ ®<uy,...,u,y and conclude.

Proof. The map e; — u; defines a section s : A™ — M of the s.e.s. 0 — ker¢p —
M A 0. By Proposition 0 M = ker ¢ @ s(A™). Next let mq,..., m, be
a generating system of M. Since the sum is direct, m; = k; @ u; with k; € ker ¢.
Now if k € ker ¢, then k = > a;m; = > a;k; + D, a;u;. Again, by directness of the
sum, > a;u; = 0 so that k;, i = 1,...,r, generate ker ¢. Il

55. Exercise (Koszul complex of a pair). Let A be a UFD, and x, y € A be
two elements without common factor except for units. Write a = (x,y) < A for the
ideal generated by x and y.

(i) Show that the sequence

0 A—s 2 P g 0,

with a(a) = (—ay, azx) and B(a,b) = ax + by is exact.
(ii) Find an example where a £ A. Show that in this case, a needs at least two
generators, and is not a free module.

Proof. (i) Surjectivity of 3 is clear by definition of a = (z,y), and so is injectivity
of a. It remains to show that ima = ker 8. The inclusion < is obvious. For the
inclusion o, let (r,s) € ker 8, that is rz = —sy. Since x has no common factor
with y, | s. Similarly, y | r. It follows that r = ¢y, s = dz and ¢ = —d. hence
(r,8) = (cy, —cx) = a(—c).

(ii) An example is provided by A = k[x,y]. Now assume that a = (c) for some
ce A. Then ¢ | 5(1,0) = z and 5(0,1) = y. Since = and y have no common factor
except units, ¢ must be a unit, whence a = A. If a were free, one could find two
linearly independent generators m; without common factors. However, the map
¢(a,b) = amy + bmg necessarily has a kernel as (i) shows. O

Cayley-Hamilton theorem and corollaries. If M is an A-module we can
view a € A as a morphism M — M sending m to am. In this way we get a map
A — End(M), a representation of the ring A; if this map is injective, the module
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M is said to be a faithful A-module. If ¢ € End(M) we write A[p] for the subring
of End(M) which is generated by ¢ and the image of A in End(M). In the sequel,
we let for an ideal a ¢ A

CIM:{Z aimi|aiea,mieM}.

finite

56. Proposition (Cayley-Hamilton). Let M be a finite A-module, generated
by n elements, and ¢ : M — M a homomorphism. Suppose that a is an ideal of A
such that (M) < aM. Then ¢ satisfies a relation of the form

"+ ar" .t an1p+an =0

in End(M), where a; € a® fori=1,...,n.
Proof. Let mq,...,m,, be a set of generators of M. Since p(m;) € aM we can write

w(ml) = Zaijmj with a;; € a.
J

In terms of the subring A[p] of End(M), we can rewrite this as follows. First,

2 (Bij — aij)m; =0

J
(with ¢;; the Kronecker symbol). Let A := (6;;¢ — a;5);; and consider A as an
n x n-matrix with entries in A[¢]. The above equation then reads »;; A;;m; = 0,
and multiplying by (adj A)g; and summing over ¢ (where adj denotes the adjugate
matrix) yields (det A)my, = 0 for all k& (recall that det A € A[p]!). Hence det A =0
in A[p], and expanding out the determinant yields the result (see also [Rel Section
2.6] for an extended version of this proof). O

57. Corollary. If M is a finite module and M = aM, then there exists an element
x € A such that x = 1moda and xM = 0.

Proof. Apply the previous theorem to ¢ = Idy;. Since Id’fw = Idys the identity
reads (1 +b)Idp = 0 for b = > a; € a. Hence z = 1 + b is the desired element. O

58. Remark. The submodule
Mo = {m € M | there exists 0 & a € A such that am = 0}

is called the torsion module of M. If M, = 0, then M is called torsionfree.
The previous corollary then asserts that if aM = M for some proper ideal a of A,
then M is pure torsion, i.e. M = M;,,.

59. Corollary. If M is a finitely generated A-module, and ¢ : M — M is an
A-linear map which is onto, then ¢ is injective, i.e. @ is an automorphism of M.

Proof. Let m € M be such that ¢(m) = 0. We need to show that m = 0. Let
us view M as an A[z]-module via - m = ¢(m) (cf. 0[47] (iv)). By assumption,
aM = M for a = (z) < A[z]. Hence there exists a = 1 + bx € A[z] such that
aM = 0. In particular, 0 = am = m + bp(m) = m. O
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60. Corollary (Nakayama’s lemma). Let (A, m) be a local ring, and M a finite
A-module. Then M = wmM implies that M = 0. (For instance, if A is a field, then
m = (0) and the implication holds trivially.) In particular, if M % 0, then M /mM
is a non-trivial vector space over k = A/m.

Proof. By the previous corollary there exists £ = 1 mod m such that M = 0. By
0[T1] # must be a unit, whence z~'zM = M = 0. O

This can be generalised as follows (N = 0 in the following lemma gives Nakayama’s
version).

61. Corollary. Let (A,m) be a local ring, M an A-module, and N ¢ M a
submodule such that M /N is finite. If M = N +mM, then N = M. In particular,
if M is finite over A, and if mq, ..., m, are elements whose images in M /mM span
the vector space, then mq,..., m, generate M.

Proof. By assumption, m(M/N) = mM/(mM n N) = (mM + N)/N = M/N, so
that by Nakayama’s lemma, M/N = 0, hence M = N. For the second assertion,
let N = (my,...,my). The composition N — M — M /mM maps N onto M /mM
by design, so that N + mM = M. Now apply the previous corollary. O

62. Proposition and Definition (rank of a module). Let M be a finitely
generated A-module and let ¢ : M — M be a surjective morphism. Then ¢ is an
isomorphism. In partcular, if M is a free module with isomorphim M =~ A™, then
n does not depend on the isomorphism. It is called the rank of M.

Proof. By setting x - m := ¢(m) we can see the pair (M, ¢) in a natural way as an
Alz]-module, cf. also Example 0[41] (iv). Since ¢ is surjective, ()M = M so that
by Corollary 057 there exists f = Y}, a;2" € (z) with f-m = Y a;¢'(m) = m.
It follows that ¢(m) = 0 implies m = 0, whence injectivity. O

63. Remark. Unlike for vector space, injectivity is not enough to conclude
surjectivity as the map m € Z — 2m € Z shows.

Tensor products. As for vector spaces we can form the tensor product of two
A-modules. More precisely, we have the following.

64. Proposition and Definition (tensor product). Let N and M be A-
modules. Then there exists a pair (T,T) consisting of an A-module T and an A-
module T and an A-bilinear mapping 7 : M x N — T, with the following universal
property: Given any A-module L and any morphism « : M x N — L, there exists
a unique morphism & : T — L such that « = & oT. Moreover, if (T,7) and (T',7’)
are two such pairs then there exists a unique isomorphism j : T — T’ such that
joT =7". T is called the tensor product and is denoted by M ® N or simply
M®N.

Proof.
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Step 1. Uniqueness. Note that for (L,a) = (T,7), uniqueness of the induced
morphism 7' — L = T implies that 7 = Idy. Replacing (L, «) by (T7,7') we get a
unique map 7’ : T — T’. Interchanging the roles of (T,7) and (T”,7') gives a map
7:T" — T inverse to 7.

Step 2. Euxistence. Let T denote the free A-module generated by M x N, ie. T
consists of formal linear combinations Y.!" , a;(m;,n;). Let R be the submodule
generated by all elements of 7" of the form

(m + ', ) — (m,m) — (i,
(m,n+n') = (m,n) — (m,n')
(am,n) — a(m,n)
(m,an) —a(m,n).

Define T' := T/R Denote the equivalence class of (m,n) by m ® n. Then 7 :
M x N —T, (m,n) — m®mn yields the desired map.

O

65. Remark.

(i) M ® N is generated by {m ®n | m € M, n € N}. In particular, any element
in M ® N is of the form " ; m; ® n;. If M and N are finitely generated by
{mi}ier and {n;} es respectively, then so is M ® N by {m; @ n;}(; jerx.-

(ii) Note that the expression m ® n is ambigous as long as we do not specify the
tensor product to which it belongs. For instance, let A= M =7, N = Z/27
and M’ = 27Z. If 1 denotes the nonzero element in N, 2® 1 =1®2 =0 in
M®N,but £0in M ®N .

(ili) We can form the tensor product of several factors, that is, we have a multi-
linear map My x ... x M, - M1 ®...® M, etc.

(iv) fa: M — N, 8: M' — N’ are morphisms we can from the tensor product
of morphisms a® f: M ® M’ — N ® N’ by taking the induced map from
MxM — NQN', (m,m') — a(m)®B(m'). In particular, a® S(m®m') =
a(m) ® B(m’).

66. Lemma. Let z; € M, y; € N be such that Y x;®y; =0 in M®N. Then there
exists finitely generated submodules My and Ny of M and N respectively such that
Yz, ®y; =0 in My ® Ny. (For an application of this result, see Proposition 0
below.)

Proof. 1f we write M @ N = (M x N)/R as in Proposition 0J64] then > z; @ y; = 0
in M ® N implies > (z;,y;) € R. Let My resp. Ny be the submodule of M resp. N
generated by the x; resp. y; occuring in the sum. Then > (z;,y;) € R~ (My x Np),
1€Z.’E1®y2=01DM0®N0 O

67. Proposition. Let L, M and N be A-modules. Then there exists unique
isomorphisms such that
i) MEN >NRM,z®y — yRx;
(i) MOIN) L > MR (NQL) > MINRL, (z2®y)®z—r® (y® z) and
@ (Y®z) > r®Y®2;
(iii) MAN)QL > (MRL)®(N®L), (,y) ®z— (z® 2,y ® 2);
(iv) AQM — M, a®z — ax.
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Furthermore, let B be a ring, N a B-module, and L an (A, B)-bimodule, i.e. L
is a simultaneous A- and a B-module such that a(xb) = (ax)b for alla€ A, be B
and x € L. Then M ®4 L and L ®pB N are natural (A, B)-bimodules, and we have

(M®aL)Y®s N=M®s(L®p N)
as an (A, B)-bimodule.

Proof. This is a routine application of the universal property of tensor products.
For instance, consider the map a: M x N - N ® M defined by a(z,y) = y®@x
which gives rise to amap & : M @ N - N ® M satistying a(z ®y) = a(r(z,y)) =
a(z,y) = y®uz. Similarly, the map 8: N x M > M®N, B(y,z) = x @y gives rise
to a linear map 3 : NQ M — M ®N. Clearly, foa = Idyen and aof = Idngar-
As another example, consider the associative law (ii). Fix [ € L and consider the
map ¢ : M x N > M ®N ® L given by ¢o(m,n) = m®n ®I{. This is bilinear in
m and n and therefore factorise via ¢; : M @ N - M ® N ® L. Next we define
amap ®: (MN)x L > M®N ® L via ®(v,l) = ¢;(v). Here, M @ N ® L is
defined as in Remark 0[65] (iii). This is bilinear in v and [ and thus factorises via
d: (MRN)®QL — M®N QL. This is the desired isomorphism for ®(m@n®1) =
P(m®n,l) = g(m®n) = m®n®I etc. For the (A, B)-bimodule isomorphism,
see http://math.stackexchange.com/questions/878660/atiyah-macdonald-exercise-
2-15. (]

68. Remark. If we tried to define the map f: M @ N — N ® M directly via
fim®mn) =n®m we would face the problem to show that this is well-defined —
{m®n|me M, ne N} is merely a generating system. This is the reason why we
invoke the universal property.

Another way of looking at the tensor product is to fix an A-module M and to
put Tps(L) = M ®4 L for any other A-module L. Further, if « : L — N is an
A-linear map we let Ty () = a®Idy : L®4 M =Ty (L) > N®a M = Ty (N).
In particular, we have Ths(a o 8) = Thr(a) o Tar(B). In the language of abstract
nonsense (that is, category theory), this means that Th/ is a covariant functor (see
Appendix [A] for the basic notions of category theory). In algebraic geometry, and
more generally, in homological algebra, it is a natural question to ask whether such
a functor is ezxact, i.e. whether or not it preserves exact sequences.

69. Proposition (T, is right-exact). Let M be an A-module. If

N s NP N 0.

is an exact sequence of A-modules, then so is

TM( ) T (B)
_—

One also says that Ty is right-exact.

Proof. This follows from a straightforward, if tedious computation, see [GaCAl
Proposition 5.22]. O

Recall that aM denotes the submodule {> . ...a;m; | a; € a} of M (cf. also the
second assertion in Nakayama’s lemma O.
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70. Exercise (quotient modules as tensor products). Let a = A be an ideal,
and M an A-module =
(A/a) ®a M =~ M/aM.

Proof. The map A/ax M — M /a given by (@, m) — am (where the bars denote the
respective equivalence classes in A/a and M /aM respectively) is bilinear, whence
induces a map ¢ : A/a®4 M — M/aM. On the other hand, the kernel of the A-
linear map M — A/a® M, m — 1®m clearly contains aM. Therefore it descends
to amap ¢ : M/aM — A/a®4 M sending m to 1 ® m. Since 1) and ¢ are inverse
to each other, we have the desired isomorphism. O

71. Remark. If M is flat (see Definition 0 below), we can argue as follows.
By 0[69] we have an exact sequence a®4 M — A®a M — (A/a) ®4 M — 0. By
(iv) of O A®s M =~ M, and under this isomorphism, a ®4 M is identified with
aM, Indeed, since the inclusion a = A is injective, then so is the induced map
a®s M —> A®s M. Hence M/aM =~ (A/a) ®4 M.

72. Exercise (trivial tensor product). Let (4, m) be a local ring with residue
field k = A/m, and let M and N be finitely generated A-modules. Prove that

(i) My := M ®4 k has a natural k vector space structure which makes My, iso-
morphic with M /mM (cf. also Ezercise 0@;
(ii) (M ®a N)i = My, ® Ny, as k-vector spaces;
(iii) if M ®4 N =0, then M =0 or N =0.

Hint for (ii): Apply Nakayama’s lemma.

Proof. (i) We only define the scalar multiplication: For z € k and m®y € M ®4 k,
define - m®y := m ® zy. To construct an isomorphism with M /m, consider the
A-bilinear map M x k — M /m defined by (m,a) — am, where a € k = A/m denotes
the euqgivalence class in k and am the equivalence class in M /m. This induces a
map ¢ : M ®4 k — M/m which is in fact k-linear for the k-vector space structure
defined above. Indeed, p(b-m®a) = p(m @y -2) = bam = b-am. On the other
hand, we define a map 1 : M /m — M ®a k by ¥(m) = m® 1. This is well-defined
for if am e mM, then am® 1 = m®®al = m®a = 0, for a € m.

(ii) By Exercise 0[70| we have to show that M@ N/m(M®aN) = M/mM®;N/mN.
Asin (i) we can construct a k-linear map ¢ : M/mM®, N/mN — M@ N/ m(M®4
N) sending m®mn to m ® n, as well as an A-linear map ¢ : M@ N/m(M®s N) —
M/mM ®; N/mN sending m ®n to m® 7. It remains to see that ¢ is k-linear. So
letacek. Thena- m@n=a-mPnissent toamxn=mRan =a-mn.

(iii) By assumption, 0 = (M ®4 N)i = My ® Ny which implies either My = 0
or Ny = 0 for My and N are vector spaces, and the dimension of the product is
the product of the dimensions. Since My = M /mM and Ny = N/mN, Nakayama’s
lemma implies M =0 or N = 0. U

73. Example. Take A = Z and consider the exact sequence 0 — Z 2% 7. If we
tensor with M = Z/27Z, then 0 > Z®z M — Z ®z, M is not exact, since for any
2@mMEeZ®z, M,2Q0Id(z®m) =2x®m =z ®2m = 0. Hence 2®1d is the zero
map, while Z ®z Z/27 =~ Z/27 + 0.

74. Proposition and Definition (flat modules). Are equivalent for an A-
module M:
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(i) M is flat, that is, Tas takes exact sequences to exact sequences: If

0 N s NP 0

is an exact sequence of A-modules, then so is

0 TM(N’) T (o) Tar(N) T (B) TM(N//) 0:
(i) If
N/ $_ N L NI/

is an exact sequence of A-modules, then so is

TM(N/) T (@) Tar(N) Tn(B) TM(N//) :
(iii) if N' > N — N" is exact, then so is Tay(N') = Tpr(N) — Tpr (N”);
if a1 N' — N is injective, then so is Ty (o) = a®Id.
if N and N’ are finitely generated, and o : N' — N is injective, then Ty (o) =
a®Id is injective.

Proof. (i)« (ii) This follows directly from splitting and glueing of the exact sequence

0 ——>kera —> N -2 N o N" — "> coker f —= 0,

cf. Exercise 047

(iii)«>(iv) Follows directly from Proposition 0[69]

(iv)=>(iii) Obvious.

(iv)=>(iii) Let « : N’ — N be injective. Let u = > 2; ® y; € ker(a ® 1), that is,
Ya(z)®y; =0in N® M. Let Nj be module generated by the (finitely many)
z;. By Lemma 0J66] there exists a finitely generated submodule Ny of N which
contains «(NV}) and such that >, a(z;) ® y; = 0 in No ® M. It follows that Ths of
the restriction ag : N} — Ny maps > 2, @ y; € N, ® M to 0 € Ng ® M. Since
T (ap) is injective by assumption, > z; ® y; = 0 in N} ® M, hence in N ® M.
Therefore, Ty« is injective. U

75. Examples. Vector spaces, or more generally, free modules are flat.

Algebras. Let f: A — B be aring morphism. The operation a-b := f(a)b turns
B into an A-module. The module structure is compatible with the ring structure
in the obvious sense, i.e. (a1 +as)-b=a;-b+az-b, a-(by+b) =a-by+a-bs
and a - (ble) = (a . bl)bg = bl(a . b2)

76. Definition (A-algebra). An A-algebra is by definition an A-module struc-
ture on a ring B provided by a morphism f : A — B as above. An A-algebra
morphism f: B — C is a ring morphism which is also an A-module morphism.

77. Example. The ring Alzi,...,2,] is an A-algebra with respect to the

natural inclusion A < A[xy,...,z,]. More generally, A[z1,...,z,]/a for any ideal
ac Alzy,...,x,] is an A-algebra.
78. Remarks.

(i) If A = k is a field, then any nontrivial morphism k& — B is injective (cf.
Proposition O. In particular, any k-algebra is a ring containing k.
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(ii) Let A be any ring. Then there is a natural map Z — A, n— 1+ ...+ 1 (n
times 1). In particular, every ring is automatically a Z-algebra in the sense of
Definiton 0[76

79. Definition. A ring morphism f : A — B is called finite, and B is a
finite A-algebra, if B is a finite A-module. Further, f is of finite type, and B is
a finitely generated A-algebra if there exists a surjective A-algebra morphism
F: Alzy,...,2,] — B with F(A) = f(A), i.e. B is isomorphic (as an A-algebral!)
to A[x1,...,x,]/a for some ideal a € A[zy,...,z,] and n € N. Equivalently, any
element in B can be written as a polynomial in F(z;) with coefficients in f(A).

We usually drop the reference to the underyling morphism f : A — B and simply
speak of an A-algebra B.

80. Exercise (finitely generated algebra vs. finitely generated module).
Let A be an integral domain with field of fractions k, and let f € A\{0} be not a
unit. Then A[1/f], the algebra generated by A and 1/f inside k, is not a finite
A-module.

Proof. Indeed, assume the contrary. Then there exists k € N such that f~(*+1D =
Zf:o a;f~%. Hence 1 = Zf:o a; fFit = fZi;o a; f*~*. In particular, f is a unit.
Contradiction! O

81. Proposition (tensor product of algebras). Let B and C be two A-
algebras. Then B®4 C is also an A-algebra.

Proof. Let T be the A-module B ®4 C. We define a ring structure via the mul-
tiplication p : T x T — T induced by u(b® ab® ¢) = bb ® cé. Again, the point
to show is that p is well-defined. First, define a map B x C x B x C — T by
(b, c, b, ¢) — bb® cé. Since this is linear in each factor, the universal property yields
an A-linear map B C® B®C = T®T — T which corresponds to a bilinear
map p T xT — T. It is straightforward to check that this turns 7" into an
A-module. O

82. Exercise (flat A-modules). Let A — B be a ring morphism, and M a flat
A-module = Mp := B®a M is a flat B-module.

Proof. Let ¢ : Ny — N3 be an injective B-linear map between two B-modules N ».
We regard B as an (4, B)-bimodule so that by Proposition 0 we have

N, ®Mp=N,®5 (B4 M) =(N;® B)®@a M = N;®4 M. (1)

Under these isomorphisms ¢ ® 1 : N1 g Mp — No ®p Mp becomes an A-linear
morphism Ny ®4 M — Ny ®4 M which sends (bn) ®4 m to (bp(n)) ®4 m =
p(bn) ®4 m induces a B-linear map Ny ®4 M — Ny ®4 M. Since M is a flat
A-module, this map, and a fortiori ¢ ®1 is injective, whence Mp is a flat B-module
according to Proposition 0[74] (]
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0.3. Finiteness conditions. The fact that submodules of finitely generated mod-
ules are not finite again is a major nuisance. One therefore seeks finiteness condi-
tions which prevent this phenomen.

Noetherian rings and modules. Next we discuss one of the most important
classes of rings, namely those rings whose ideals are finitely generated modules. In
particular, the rings of the form k[x1,...,x,]/a, which play a key role in algebraic
geometry, belong to this class.

83. Definition (ascending and descending chain condition). A partially
ordered set Eﬂhas the ascending chain condition (a.c.c. for short) if every chain
§1 < 89 < 83 <...< 8, <...becomes eventually stationary, that is, there exists
k € N such that sy = sg11 = .... Similarly, one defines the descending chain
condition (d.c.c.) for chains s1 = s9 = s3> ...2 8, > ....

84. Example. The set of vector subspaces of a finite dimensional vector space
ordered with respect to inclusion satisfies the a.c.c..

85. Remark. For every partially ordered set (X, <) a.c.c. is equivalent with every
nonempty subset S having a maximal element m (i.e. if s € S with s > m, then
s = m): Indeed, a stationary sequence has a maximal element. Conversely, if we
had no maximal element, we could inductively construct a sequence which does not
become stationary.

86. Proposition and Definition (Noetherian rings). For a ring A are equiv-
alent:

(i) The set of ideals of A has the a.c.c.;

(ii) every nonempty set of ideals has a maximal element with respect to inclusion;
(iii) every ideal is finitely generated.
If any of these conditions is satisfied we call A Noetherian.

Proof. (i)<(ii) This is just the previous remark.

(i)=(iii) Let a be an ideal of A and pick z; € a. Choose inductively a sequence
Zit1 € a\(x1,...,x;). Since the sequence (1) < (x1,22) ... < (T1,...,Tp) C ...
eventually becomes stationary, we must have (x1,...,2,,) = a for some m.
(ii)=(iii) Let a be an ideal and S be the set of finitely generated ideals in A which
are contained in a. Since (0) € S this is nonempty, hence has a maximal element
b by assumption. However, if there exists x € a\b then the ideal generated by
x and m would be finitely generated, be contained in a and strictly contain b, a
contradiction. Hence a = b.

(iii)=(1) Let a1 € ap < ... < a,, < ... be a sequence of ideals. Since b = (Ja; is

again an ideal which by assumption is finitely generated, we have b = (z1,...,z,).
Since the are finitely many ideals a; which contain the generators, the sequence
eventually stops. O

87. Remark. Similarly, the d.c.c. is equivalent to the existence of minimal el-
ements. A ring satisfying the d.c.c. is called Artinian (cf. for instance [AtMal
Chapter 8]). An Artinian ring is always Noetherian, that is, d.c.c. on ideals implies
always a.c.c.. More precisely, a ring A is Artinian if and only if A is Noetherian

1Recall that this means that there exists a binary relation “<” on X which is reflexive, anti-
symmetric, and transitive.
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and every prime ideal is maximal (see for instance [GaCAl Proposition 7.17]). How-

ever,

the d.c.c. is not equivalent with ideals being finitely generated which is why

Noetherian rings are more important than Artinian ones.

88. Examples.

(i)
(i)

Z satisfies a.c.c. but not d.c.c. Indeed, consider the infinite chain (a) > (a?) o
(@) > ... for a + 0.

Similarly, k[z] satisfies a.c.c., but not d.c.c. Indeed, consider (x1) > (22) o
.... In fact, Hilbert’s base theorem O asserts A Noetherian (for instance
A = k) = Alx] is Noetherian. The proof can be extended to show that A Noe-
therian = A[z] (ring of formal power series) is Noetherian, see Theorem 0103
and Exercise 0105

k[z1,22,...] in an infinite number of indeterminates x; satiesfies neither chain
condition. Indeed, consider (z1) < (z1,22) < (21,%2,23) < .. ..

Consider the germ of continuous functions at 0 € R, i.e. the set of equivalence
classes [U, f] where U < R is an open subset containing 0 and f : U —
R a continuous function. We have [U, f] = [V,g] < there exists an open
neighbourhood W of 0 in U n'V with f|w = g|w. Multiplication and addition
of germs turn this into a commutative ring A. Further, [U, f] is a unit in A <
f(0) £ 0. Hence, the nonunits form an ideal m which by Proposition O is
maximal. In particular, (4, m) is a local ring. However, it is not Noetherian.
Namely, assume that m has a finite number of generators fi,..., f,. Then
for any g € m we have g = >, a;f; for continuous functions a; defined near 0.
In particular, there exists a constant ¢ (depending on g of course) such that
lg(z)] < emax |f;(x)] as  — 0. In particular, |g(x)|/max|f;(z)| is bounded
for any g as * — 0 which of course cannot be true for there exist functions
which vanish at 0 yet decrease much faster than max |f;(x)|. For instance,
put g(z) = /max [a], [fi(@)], then g/max|fi(x)| > g/maxlal, |fi(z)] — o
as * — 0. Similarly, the ring of C* germs is not Noetherian, while the
Noetherian property holds for holomorphic functions (this follows essentially
from the power series property of holomorphic functions and (ii) above).

In a similar vein, consider an infinite compact Hausdorff space X together
with the ring of continuous functions A = C(X). Take a strictly decreasing
sequence of closed sets F} D F, o ..., and let a; = {f € A | f(F;) = 0}.
Then a; < ap < ... is a strictly increasing sequence of ideals, hence A is not
Noetherian.

Proposition 0[80] generalises easily to modules:

89. Definition (Noetherian module). A module M is called Noetherian if
its set of submodules satisfies the a.c.c. with respect to inclusion.

90. Remark.

(i)
(i)

91.

In particular, A is a Noetherian ring if and only if it is a Noetherian A-module.
In the same way, we can define Artinian modules which satisfy the d.c.c.

Proposition (Noetherian modules and finitely generated submod-

ules). M is a Noetherian A-module if and only if every submodule of M is finitely
generated. In particular, M is itself finite over A.
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Proof. =) Let N be a submodule of M, and let ¥ be the set of all finitely generated
submodules of V. Since 0 € 3, ¥ is nonempty. By the a.c.c. it must have a maximal
element, say L. If N = L, then N is finitely generated. If not, there exists x € N\L,
and L and = generate a submodule which both is finitely generated and properly
contains L, a contradiction to its maximality.

<) Let Ny € Ny c ... be an ascending chain of submodules. Then the union | J V;

is also a submodule which by assumption is finitely generated, say by mq,...,m, €
M. But then there must be an n such that m; € N; for [ > r. It follows that
N; = N, for all [ > r so that the chain is stationary. O

92. Proposition (quotients and submodules of Noetherian and Artinian

modules). Let 0 —» L 5 M 5 N = 0 be a short ezact sequence of A-modules.
Then

Mis Noetherian (Artinian) < L and N are.

In particular, quotients and submodules of Noetherian (Artinian) modules are again
Noetherian (Artinian).

Proof. We prove the statement for Noetherian modules, the Artinian case being
similar.

=) Any ascending chain in L or N corresponds to an ascending chain in M so that
L and N inherit the a.c.c. from M.

<) Suppose M7 © My < ... is an ascending chain of submodules. Thinking of L
as a submodule of M we have the chain L n My ¢ L n My c, and applying 8 we
also get B(M;) < S(Ms) < ... of submodules in N. Each of these chains eventually
stops by assumption and the result follows from Lemma 0/46] O

93. Corollary (direct sum of Noetherian (Artinian) modules). If M;
are a finite number n of Noetherian (Artinian) modules = @,; M; is Noetherian
(Artinian).

Proof. 0 - My — M1 @ My — Ms — 0 is a split exact sequence which implies the
assertion for n = 2. Then proceed by induction. (I

94. Exercise (subrings of Noetherian rings). Are subrings of Noetherian
rings again Noetherian?

Proof. No. Take an integral ring which is not Noetherian, for instance A =
k[z1,22,...], and consider the inclusion A € k = Quot A. As a field, k is Noe-
therian. However, A is not. (I

95. Corollary (modules over Noetherian rings). Let A be a Noetherian ring.

(i) If M a finite A-module < M is Noetherian. In particular, any submodule of
a finite module over A is itself finite.
(ii) If a c A is an ideal = A/a is Noetherian ring.
(iii) If ¢ : A — B is a ring morphism such that B is a finite A-module = B is
Noetherian ring.
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Proof. (i) If M is Noetherian it is finite as we have seen above. If M is finite over A,
then M = A™/N so that M is Noetherian A-module as the quotient of a Noetherian
A-module A™.

(ii) A/a is a Noetherian A-module. Since the scalar multiplication of A and A/a
coincide, it is also a Noetherian A-module, that is, A/a is a Noetherian ring.

(iii) B is obviously Noetherian as an A-module. Its ideals are A-submodules, hence
finite as A-modules and a fortori as B-modules. O

96. Exercise (finite presentation of finitely generated modules over Noe-
therian rings). If A is Noetherian and M finitely generated, then it is finitely
presented, that is, there exists an exact sequence

AT 53 AP 23 0N 0.

Remark: Any finitely presented module (over an arbitrary ring) is obviously finitely
generated. The exercise shows that the converse holds if A is Noetherian.

Proof. Since M is finitely generated, by definition there is an epimorphism s :
AP — M, This gives the exact sequence 0 — keryp; — AP — M — 0. Since
A is Noetherian as a module over itself, so is AP by (i) of the previous corollary.
Hence ker ¢ is a finitely generated A-module so that there exists an epimorphism
w9 : A1 — ker . O

97. Remark. If A is Artinian, and

(i) M a finite A-module = M is Artinian;
(ii) a < A an ideal = A/a is an Artinian ring.

98. Exercise (Cohen’s theorem). If all prime ideals of A are finitely generated
= A is Noetherian.

Hint: Consider the set X of ideals which are not finitely generated.

Proof. Assume Y £+ . By Zorn’s lemma, there exists a maximal element a which
by assumption is not prime ideal. Indeed, take a chain ay < a; < .... Then the
union | Ja; is again an ideal because the union is taken over a chain. If it was
finitely generated, then the generators must be contained in some ideal ay for N
large enough, so a € ¥ is an upper bound. It follows that there are a, b € A with
ab € a, but a, b ¢ a. Since a + (a) contains a it must be finitely generated, say
a+ (a) = (x1,...,2,,a) with z; € a (otherwise, write z; = a; + ¢;a with «; € a
and ¢; € A and replace x; by ;. Moreover, a : (a) = {x € A | za € a} contains b.
Hence a is strictly contained in a : (a) which therefore has a finite set of generators
{y1,...,ys}. But then a = (z1,...,2n,y10,...,ysa) for if @ = > a;x; + ca € a, then
ca € a so that ¢ must be a linear combination of the y; € a : (a). Thus a is finitely
generated, a contradiction. Hence ¥ = (J so that A is Noetherian. O

99. Exercise (prime ideals in Artinian rings). Let A be an Artinian integral
domain. Prove that A is a field. Deduce that every prime ideal of a general Artinian
ring is mazximal.

Hint: For a € A, the d.c.c. applied to (a) o (a?) o ... o (a*) gives a relation
af = zabtl z e A
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Proof. Let 0 & a € A. By the d.c.c. there exsist k € Nund z € A so that a* = za®*1.
If k = 0, then za = 1, so that a is a unit. Otherwise, a(za® — a*~') = 0. Since
A is integral, za* — a*~1 = 0. Continuing in this way, we arrive again at za = 1,
whence A is a field.

If A is a general Artinian ring and p € A a prime ideal, then A/p is an integral
Artinian ring. Let m © p be an ideal of A containing p. Then there exists m in A/p
whose inverse image is m. However, m is either trivial or A/p by the previous step.
Hence either m = p or m = A so that p is maximal. ]

100. Exercise. Let (A,m) be an Artinian local ring. Prove that m is nilpotent,
i.e. there exists k € N with mF = 0.

Hint: The d.c.c. yields k € N such that m¥ = m**1. Assume that m & 0, otherwise
there is nothing to prove. Let ag be minimal among the ideals of A with a-m”* + 0
(why does it exist?). Prove that ap = () is prinicpal before applying Nakayama’s
lemma 060 to it.

Proof. Since A is Artinian, ag exists by Zorn’s Lemma. By design, there exists
x € ag such that zm* #+ 0, whence (z) = ag by minimality. Further, since (z)m <
(r) and (z)m-mk = (z)m**! = (z)m* + 0 we conclude by minimality again that
(x)m = m. But M = (x) is a finite A-module, hence M = 0 = z by Nakayama’s
lemma. Contradiction! O

101. Exercise [AtMa), 8.3]. An Artinian ring A has only finitely many maximal
ideals.

Proof. Consider the set of all finite intersections m; N ... N m, of maximal ideals.
This set has a minimal element, say m;, n ... nm;, . Therefore, if m is maximal,
mam;, N...nm;, =m; N...Nnm; which means that m;, n...nm; < m. Hence
m;. = m for some j = 1,...,n by Proposition 0 O

J

102. Remark. The structure theorem for Artinian rings asserts that an Artinian
ring is uniquely (up to isomorphism) a finite direct product of Artianian local rings,
see for instance [AtMal Theorem 8.7].

103. Theorem (Hilbert basis theorem). If A is Noetherian, then so is the
polynomial ring Alx].

Proof. We prove that any ideal 2 ¢ A[z] is finitely generated by “reducing” it to
A.

Step 1. Construction of the generators. For n = 0 we consider the sets
a, := {a € A | there exists f € 2 such that f = az" + b, 12" ' + ... + b},

that is, a, is the set of elements in A which arise as leading coefficient of a poly-
nomial of degree n in 2. Since 2 is an ideal, so are the a,. Further, since f € A
implies zf € %A, a, < a,41 is an increasing chain of ideals. By the Noether prop-
erty of A, (i) the sequence eventually becomes sationary for n = m; (ii) there exist
{ani,...,anr, } which generate a,. From the definition of these ideals, there exist
polynomials f,,; € 2 of degree n having a,; as the leading coefficient.
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Step 2. We show that the set B generated by { fi; }i<m, i<r, contains 2. This follows
from an induction on the degree of polynomials in . If f € 2 is a polynomial of
degree 0, then f € B since ag < *B. For deg f = n > 0 with leading coeflicient a we
consider two cases. If n = m, then a,, = a,, so that a = Z;Zl bt with b; € A.
But then g = f — > b, ™ f,,,; € 2 has degree < n for we have killed the leading
coefficient of f. By induction, g € 9, and therefore f € %. On the other hand, if
n < m, then f — > b; fn; has degree < n if a = > b;an; (check the indeces in both
cases!). Again f € 5.

d

104. Corollary (Noetherness of polynomial rings). Let A be Noetherian

= Alx1,...,x,] is Noetherian. More generally, any finitely generated A-algebra is
Noetherian.
Proof. By induction on n using Hilbert’s basis theorem. O

105. Exercise (Noetherness of the ring of formal power series). Adapt the
proof of Hilbert’s basis theorem to show: If A is Noetherian = A[x] is Noetherian.

Proof. The proof is similar to Hilbert’s basis theorem, the essential difference being
the definition of the ideals a,,. If 2 is an ideal of A[z], let

a, := {a € A | there exists f € 2 n 2" Ax] such that f = ax™ + by, 12" +...}.

This yields an increasing chain of ideal ay < a; ... in A, and one can proceed as
in Theorem 0 see also [Mal Theorem 3.3]. Namely, since A is Noetherian,

(i) the chain becomes stationary, i.e. there exists N € N such that ay = ay4+1 =

(ii) the ideals a; are generated by a finite number of elements ag;, i = 1,...,7;.

We take anyji =an; fori=1,...,7ny4; = TN.

For each a,; choose gz € A N xSA[[:z:]] of the form gy; = agz® + 3., ,, bjz’. For
s = N + j we take gnyji = 2/gn;. We wish to show that these g,; generate
2 over k[z]. So, if f = >, qax’ € A = A a®Afz], ag = 3;° afao; so that
f—g0€qn XA[x] for go = >, afgo;. Similarly, we can construct g1, ga, ..., gn
such that fyi1:=f—go—g1—...—gn = axN+! +'ZJ>N+2 bjzl € An XN A[z].
In particular, a € ay+1 = ay so that a = Dl ol qan; so that fny1 — gngr €
AN XN+?A[[m]] with gni1 = X Yol 1g9ni. In the same way we can construct
gny; =20 30N iy, jgni for j = 2. Foreachi > 1weset hy = 3, aly, ;27 € Alz]
so that

f=90+-~-+9N+ZgN+j

j=1
:go+...+gN+Z (Zaﬁ\,ﬂw])gm
i=1 j>1
TN

:go—i-...-i-gN-i-ZhigNi.
=1

Then go,...,gn are in the finite A-module generated by g.;, s < N, while gy,
j =0 are in the finite AJz[-module also generated by gs;. O



ALGEBRAIC GEOMETRY 1 & 2 35

106. Exercise (finite modules over Noetherian local rings). Let (A, m)
be a local Noetherian ring, and M be a finite A-module. If any exact sequence of
A-modules 0 > N — A™ — M — 0 is preserved under tensoring with k = A/m =
M is free.

Hint: Let myq,...,m, be a basis of the k vector space M/mM. By Nakayama’s
lemma, mq,...,m, generate M. Let F' = A™ be the free module of rank n and
define the map ¢(e;) = m;, where eq,...,e, denotes the standard basis of F'.

Proof. From the exact sequence 0 — ker¢p — F — M — 0 we get the exact
sequence 0 > k@ ker¢p > k®4 F > k®a M — 0. Since k ®4 F and k@ M
are vector spaces of the same dimension, the induced map 1® ¢ is an isomorphism,
hence k® aker ¢ =~ ker ¢/mker ¢ = 0 (the isomorphism is provided by Exercise ().
In particular, ker ¢ = mker ¢. But ker ¢ is finite as the submodule of a Noetherian
module (F is finite over A), whence ker ¢ = 0 by Nakayama. Thus F =~ M, so M
is free. O

Composition series and length. Next we discuss a substitute for the dimension
of a vector space which is just the cardinality of a minimal generating set. To define
an analogue notion for modules is rather subtle. Of course, for free modules we
could use just the rank. However, we saw that submodules of free modules need
not be free again. On the other hand, geometric intuition makes desirable a notion
of dimension for which the implication N < M = “dimension” of N is smaller
than “dimension” of M. The notion of length provides such a substitute. As one
might suspect the theory becomes particularly pleasent for Noetherian rings and
modules. Further, dimension is also one of the most basic geometric notions and
we will briefly explore the link between geometric dimension and algebraic length.

107. Definition (Composition series and their length). Consider a strict
chain of submodules M = My 2 M; 2 ... 2 M, = 0. The number n is called the
length of the chain. A composition series of M is a mazimal strict chain, that
is, no extra submodules can be inserted. Equivalently, each quotient M;/M;; is
simple, i.e. it has no subquotient except itself and the trivial one.

108. Proposition and Definition (Length of a module). Suppose that M has
a composition series of length n. Then every composition series of M has length n,
and every strict chain can be extended to a composition series. The common length
will be denoted by I(M) and called the length of M. We put I((M) = w0 if M has
no composition series.

Proof. For the moment, let [(M) be the least length of a composition series of M.

Step 1. We first show N ¢ M = [(N) < (M) with equality <> N = M. Let M; be
a composition series of length {(M) which exists by assumption. Consider the strict
chain N; = N n M; of N. Since N,_1/N; injects into the simple module M;_;/M;
we have either Nifl/Ni = Mifl/Mi or Nifl/Ni = 07 that is Ni,1 = N,L By
removing the repeated terms we thus obtain a composition series of N; obviously,
I(N) < I(M). Equality can only occur if N;_;/N; = M;_1/M; for all i which implies
Np_1 = M;_1 and by induction N; = M;, whence N = M.

Step 2. Any strict chain M;, i = 0,...,k of M has length < I(M). Indeed, we
have [(M) = (M) > (M) > ... > (M) = 0, whence I(My) = k.
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Step 3. If M;, i = 0,...,k is a composition series of M, then k = (M) by
the provisional definition of (M), and k < I(M) by the second step. Hence any
composition series must have length n = [(M). It follows that if M; is a strict
chain which is not a composition series then we can insert further modules until

the length is n in which case it is a composition series.
O

Note that it is a nontrivial fact for a module to have a composition series. In fact,
we have the

109. Proposition (Existence of composition series). A module M has a
composition series < M 1is satisfies both the a.c.c. and d.c.c..

Proof. =) All chains are of bounded length by the previous proposition, hence both
the a.c.c. and the d.c.c. hold.

<) Construct a composition series of M as follows. Since M satisfies the a.c.c. the
set of strictly contained submodules has a maximal element M; by Remark
M satisfies again the a.c.c. so that we can continue with this proces. We eventually
get a sequence M = My D My O ... which stops after a finite number of submodules
by the d.c.c. O

110. Definition (modules of finite length). A module M which satisfies both
the a.c.c. and the d.c.c. is called a module of finite length. The common length
of any composition series is denoted {(M) and called the length of M.

111. Remark.

(i) It follows from the first step in Proposition 0[T0§| that if N is a submodule of
a finite module M, then N is itself finite and I(N) < [(M).

(ii) Call two composition series M; and N; equivalent if they have the same
length and if up to a permutation M;_1/M; =~ N;_1/N;. Then one can prove
a Jordan-Hélder type theorem for modules: Any two composition series are
equivalent. In the case of Z-modules (i.e. Abelian groups) this is just the
classical Jordan-Holder theorem.

The first remark is reminiscent of the dimension of a vector space. A further
common property is this. Recall first that a function A defined on the class of
modules is called additive, if for every s.e.s. 0 > L — M — N — 0, the identity
A(M) = ML) + A(N) holds.

112. Proposition (I(M) is additive). On the class of all A-modules of finite
length, I(M) is an additive function.

Proof. Let 0 —» L % M % N = 0 be an exact sequence. For a composition series
in M’ take its image in M under «. In particular, the resulting composition series in
M is in the kernel of 5. For a composition series in N take the inverse image under
0, and this fits together to a composition series in M, whence the assertion. ]
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Finally, we see that the length coincides with the dimension if M is in fact a finite
vector space. More precisely, we have

113. Proposition. For a k-vector space, the following conditions are equivalent:
(i) finite dimension;
(ii) finite length;
(iii) a.c.c.;
(iv) d.c.c.
Moreover, if any of these conditions is satisfied, then length = dimension.
Proof. The implications (i) = (ii) is easy, (ii) = (iii) and (ii) = (iv) follow directly
from Proposition 0 It remains to show (iii) = (i) and (iv) = (i). Suppose (i) is
false so that there exists an infinite sequence (z,,) of linearly independent elements

in the vector space V. Let U, resp. V,, be the vector space spanned by x1,...,x,
resp. by i1, Tnao,.... Then the chain U, resp. V,, are infinite ascending resp.
descending. O

1. VARIETIES AND MORPHISMS

We saw already several examples of algebraic categories, for instance the category
of rings whose morphisms where ring morphisms, or the catgeory of A-modules
whose morphisms where A-linear maps. In this section we introduce the geometric
category we will mainly be concerned with in the first part of this course, namely
the category of varieties. We first define the objects, namely the wvarieties, and
second the morphisms. Finally, we will construct a contravariant functor to the
algebraic categories of finitely generated algebras and field extensions which will be
the bridge from geometry to algebra.

What is then a “geometric category” one may ask? Roughly speaking, this is a cat-
egory whose objects are topological spaces defined (at least locally) by functional
equations (piecewise linear, differentiable, polynomial etc.). These give rise to a
ring of functions which determines the morphisms and thus the geometric category
(piecewise linear, smooth, algebraic etc.). The link between geometry and algebra
will be thus given by polynomial rings k[x1,...,2,] (or rings derived from them
such as quotients). For instance, consider X = C. We declare a subset U of X to
be open if it is the complement in C of a finite set of points. As ring of functions we
take A = C[z] which are continuous with respect to this topology. More abstractly,
consider Spec A of a general ring A. We have already seen in the exercises at the
end of Section that X := Spec A is a topological space in a natural way. Now
for any = p € X we have a natural map A — Quot (A/p) (since p is prime, A/p is
integral!). For f € A we define a “function” on X which associates with z € X the
image of a under the map A — Quot (4/p), which we denote by f(x). In partic-
ular, unlike ordinary functions, f(x) takes values in different fields. In this sense,
A becomes a “ring of functions” for the “geometric object” Spec A. For instance,
if A =7, we can view f(p), where p is a prime, as the mod p reduction of f in the
field F, = Z/pZ. If A = C[z], then for p = (z — z) we have f(p) € Clz]/p = C,
where the latter isomorphism is induced by evaluation at z. Hence, in this case, we
can identify f(p) with f(z) so that we recover C (actually as a topological space,
as we will see later) and its ring of functions C[z].
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Literature. This course follows mostly the standard textbook in algebraic geom-
etry, namely

e R. Hartshorne, Algebraic Geometry, Springer, 1977.
For a more leisurely paced introduction we recommend

e K. Hulek, Elementare algebraische Geometrie, Springer, 2000.
Further references we occasionally use are

e A. Gathmann, Algebraic Geometry, lecture notes available at mathematik.uni-
kl.de/agag/mitglieder/professoren/gathmann/notes/.

e M. Reid, Undergraduate algebraic geometry, LMS, 1988.

e [. Shafarevich, Basic algebraic geometry 1 € 2, Springer, 1996.

General remark on fields. Unless mentioned otherwise, k will always denote an
algebraically closed field. This has two consequences: First, k has infinitely many
elements which allows us to identify the polynomial algebra k[, ..., x,] with the
set of polynomial functions k™ — k obtained by evaluation. This is false for instance
over Zs, since x(x + 1) is identically zero as polynomial function, but nonzero as a
polynomial in Zs[z]. Secondly, we can directly apply Hilbert’s Nullstellensatz
instead of appealing to results from Galois theory (cf. [Rel Chapter 5.4]).

1.1. Affine and projective varieties.

Affine varieties. Let k be a(n algebraically closed) field. The most basic algebraic
geometric object associated with k is the affine space A} . If the underlying field
is clear from the context we simply write A™. As a set, A} is just k™ but we
reserve the latter notation for the n-dimensional vector space over k. In particular,
k™ has a distinguished element, namely the origin or zero element. If we forget
about the algebraic structure we obtain A™. An element a = (ay,...,a,) € A"
will be called a point, and the a; € k are its coordinates. Moreover, A™ comes
with a natural topology to be defined below. Affine spaces arise as solutions of
(inhomogeneous) linear systems Aa — b = 0 where A € kK™*™ and b € k™. More
generally, we can replace linear equations by polynomial equations. Consider a
subset T' < k[x1,...,2,]. Since k is algebraically closed, it is infinite, and we can
freely identify polynomials with polynomial functions on A™. Define

Z(T)={aec A" | f(a) =0 for all feT}.
If (T') is the ideal generated by T, then clearly Z(T) = Z((T)). If T = {f} for a
polynomial f € k[x1,...,x,] we simply write Z(f).

1. Definition (algebraic set). A subset Y of A™ is algebraic if there exists
T c k[z1,...,2,] such that Y = Z(T).

2. Example. Consider A'. Since k[x] is principal (in fact Euclidean), we have
for any T < k[x] that Z(T) = Z(f) for some f € k[z]. Since k is algebraically
closed, f = ¢c(x —ay) ... - (x — ay,) for a; € k unless f is a constant, whence
Z(T) ={a1,...,an}. Since Z(0) = A! and Z(1) = &, the algebraic sets of Al are
as follows: ¢, finite subsets of k, and k.

We thus get a map

subsets in k[x1,...,2z,] — algebraic sets in A", T — Z(T).

In general, it is not obvious that Z(a) + ¢F for ideals strictly contained in k[z1, ..., z,].
As a consequence of the weak Nullstellensatz of Theorem [0}ff|and Corollary [0|[7] rules
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out this gloomy possibility. That is also the reason why it is called “Nullstellensatz”
— it ensures the existence of a rich theory of algebraic sets:

3. Proposition (algebraic sets exist in abundance). Ifa < k[xy,...,2,] is
a proper ideal, then Z(a) + &.

Proof. Since a is a proper ideal it is contained in some maximal ideal which by
Corollary is of the form (21 — ay,...,2, — a,). Hence (a1,...,a,) € Z(a). O

4. Examples.

(i) Conics are algebraic sets given by polynomial equations of order 2: f =
> aijrix; + bz +¢=0. In A?, these comprise the circle 22 + y2 —1 = 0,
the parabola y — 22 = 0 and the hyperbola zy — 1 = 0 (see Figure 1 for a
picture over k = R).

(ii) Cubics are given by polynomial equations of order 3. Two important examples
in A2 which we will use for illustration later are the nodal cubic y*> —z3—22 = 0
and the cuspidal cubic y?> — 2® = 0 (see Figure 1.

(iii) Interesting examples come often in families. For instance, elliptic curves are
given by the family y? —x(x—1)(z—\) = 0, X € k (see Figure 1with k =R).
For finite fields these curves play an important role in cryptography (so-called
“eec” — elliptic curve cryptography).

& S

( ('\J (L.J [c)

FIGURE 2. The standard conics in AZ. the circle (a) the parabola
(b) the hyperbola (c).

We summarise the properties of the assignement T'— Z(T') in the following

5. Proposition.
(1) T1 C Tg C k[l‘l, .. ,.Tn] = Z(Tl) D Z(Tg)
(i) Z(1) = & and Z(0) = A™. Hence the empty set and A™ are algebraic.
(iil) Z(Th) v Z2(Tz) = Z(T1T3), where TyTo = {f1 - fo | fi € T;}. Hence the finite
union of algebraic sets is again algebraic.
(iv) N, Z2(T;) = Z2(U,; T;). Hence the intersection of any family of algebraic sets
is again algebraic.
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(o) (L)

FIGURE 3. The nodal (a) and cuspidal (b) cubic in AZ.

2= -] 0 4 <

FiGURE 4. Elliptic curves for various \ € R.

Proof. Only (iii) requires proof. Let a € Z(T1) u Z(T>). Then either a € Z(T})
so that fi(a) = 0 for fi € Ty, or a € Z(T3) so that fo(a) = 0 for fo € Ty. Hence
a € Z(T1Ts). Conversely, let a € Z(ThT). Assume that a ¢ Z(T1). Then there
exists f1 € T such that f1(a) & 0. By definition, fi - fa(a) = fi(a)f2(a) = 0 so
that fa(a) =0 for all fo € Th. O

6. Remark. If a = (T) is the ideal generated by T < k[x1,...,2,], then Z(a) =
Z(T). In particular, we have

(i) Z2(I1Ty) = Z(ara2) = Z(ag naz), for ayaz < a3 nag by [023] More concretely,
ifa; = (fla"'vfs) and az = (gla'“agr)a then

Z(ay-a2) = Z((figj |i=1,...,sand j =1,...,7r)) = Z(a1) U Z(az).
(ii) Similarly, we have
Z(ag+a2) =Z((f1y.- fss 915+, 9r)) = Z(a1) N Z(az).
(iii) Z(T) = g < (T) = k[z1,...,2,]. Indeed, if a were a proper ideal of

k[z1,...,2,], then it is contained in some maximal ideal m.
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7. Definition (Zariski topology). We declare a set to be open if it is the
complement of an algebraic set. The topology thus defined is called the Zariski
topology of A”. We always think of A™ as being equipped with the Zariski topol-
ogy; the closed sets are then the algebraic sets of A™.

8. Example.

(i) In the example of A! considered above we see that a proper nonempty subset
of Al is Zariski open in A! if and only if it is the complement of a finite subset.
In particular, open sets are dense and the Zariski topology is not Hausdorff.

(ii) For any f € k[z1,...,x,] define the so-called basic open set by Dj; :=
A™M\Z(f). It is easy to see that the basic open sets form a base for the Zariski
topology, i.e. every open set is a union of basic open sets.

9. Remark.

(i) To explain the link with the Zariski topology on spectra of rings, consider
mSpec k[x] endowed with the subspace topology coming from Spec k[z]. Its
closed subsets are of the form Z(a) = {m € mSpeck[z] | « = m} for any
ideal a < k[z]. Since k[z] is a principal ideal ring, a = (f). Moreover,
f=cl®—a) ... - (x —a,) so that the maximal ideals containing a are
precisely (z — a;), ¢ = 1,...,n. Under the map which sends the maximal
ideal (z — a) to the point a € k it represents (cf. Example [0J33), Z(a) gets
map to {ai,...,a,} = Z(f), the corresponding closed subset of k. Hence the
identification of Al with mSpec k[z] is actually a homeomorphism.

(ii) Under the natural identification R? =~ C we have A2 is Al as sets, but not as
topological spaces. For instance, 2 + y? — 1 € R[x, y] defines an algebraic set
(the unit circle) which is obviously not finite in C (note that the discussion of
the Zariski topology did not require k to be algebraically closed so that A2 is
actually defined).

10. Exercise (Products of Zariski topologies). Identify A® with A* x Al as
sets in the natural way. Show that the Zariski topology on A? is not the product of
the Zariski topologies on the two copies of A'.

Proof. Think of A? = {(x,y) | z,y € A'} = Al x Al. Open sets in A! are &,
complements of finite sets, or Al. It follows that a base of open sets in Al x Al is
given by ¢J, complements of finite families of lines parallel to the z- or y-axis, or A2
(i.e. any open sets with respect to the product topology can be written as a union
of these sets). But A2 contains for instance the open subset Dy (A2 without
the diagonal) which is not of this type. O

11. Definition (irreducible sets). A nonempty subset X of a topological space
is called irreducible if it cannot be written as the union X = X; u X5 of two
proper subsets, each of which is closed in X.

12. Example. The affine space A! is irreducible for its proper closed subsets are
finite, while A! =~ k is infinite, k& being algebraically closed.

The following remarks are general in nature and apply to any irreducible topological
space X.
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13. Proposition (irreducible topological spaces). Let X be an irreducible
topological space. Then

(i) X + &.
(ii) Any two nonempty open subsets Uy, Us of an irreducible space X must inter-
sect. In particular, X is not Hausdorff.
(iii) Any nonempty open subset U of an irreducible set X is irreducible and dense.
(iv) If X is irreducible, then so is its closure X.

Proof. (i) This is true by definition.

(ii) If Uy nUy = & for two open subsets, then Uf uUS = X, where ¢ denotes taking
the complement in X.

(iii) Indeed, X = U u X\U, where X\U is closed. A decomposition of U into closed
subsets therefore yields a decomposition of X. Furthermore, X = Uu X \U so that
U = X if X is irreducible.

(lv) Assume that X = Z; U Zy with Z; closed and properly contained in X. Since
X is closed, X n Z; is closed in X and thus gives a decomposition of X. O

14. Definition (affine and quasi-affine varieties). An affine (algebraic)
variety is an irreducible closed subset of A™ together with the subspace topology
induced from the Zariski topology. A quasi-affine variety is an open subset of an
affine variety.

15. Remark. It follows from Proposition 1[I3] that any two nonempty open
subsets of an affine variety intersect, and any nonempty open subset is dense.

To establish a dictionary between geometry and algebra we associate with a subset
X < A" the ideal
I(X)={feklz1,...,xn] | f(a) =0 for all a € X}.

The main theorem for the assignement Z is the

16. Theorem (Nullstellensatz). Let k be an algebraically closed field. Then
I(Z(a) = Va.
Put differently, f(x) = 0 for all x € Z(a) = A" if and only if f* € a for some k.

Proof. Suppose f € A := k[x1,...,x,] is such that f(p) = 0 for all p € Z(a). We
introduce the auxiliary variable Y and consider the ideal

a=(a,fY —1) c A[Y].
Now p = (a1, ..., an,b) of Z(a) satisfies (ay,...,a,) € Z(a) and f(ay,...,an)b =1,
whence f(a1,...,a,) # 0, a contradiction. Thus Z(a) = ¢ so that by (i), 1 € a.
Hence there exists g; € A[Y] and h; € a such that

Zgihi +g90(fY —1) = 1.

By multiplying a polynomial g(z1,...,2,,y) by f* for a sufficiently big power k
we obtain a polynomial G(x1,...,2,, fY) (note that f is itself an expression in
Z1,-..,%n). Therefore we can write the identity between polynomials as

ZGi(wh s axnvfy)hl + GO(fY - 1) = fk(mla s axn)‘
In particular, substituting fY = 1 gives
fk = ZGi(Jfla R ) 1)]7,1 €a,
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whence the assertion. O

17. Corollary. Letp c k[z1,...,2z,] be a prime ideal. Then Z(Z(p)) = p.
We summarise the properties of Z in the next

18. Proposition (£Z07). Let X and Y be two subsets in A™.
(i) f Y €« X c A", then Z(Y) o Z(X). B
(ii) For any subset X < A™, Z(I(X)) = X, the closure of X. In particular,
Z(Z(X)) = X for any algebraic set.
(iii) For any ideal a < k[z1,...,z,], Z(Z(a)) = +/a.
(iv) We have Z(X 0Y) = Z(X) n Z(Y). Further, if Y is closed, then Z(X\Y) =
I(X): Z(Y).
(v) Z(X) is a radical ideal.
Proof. (i) Clear from the definition.
(ii) Obviously, X is contained in the closed set Z(Z(X)), whence X < Z(Z(X)).
On the other hand, let Y be any closed set containing X, then ¥ = Z(a) for some
ideal a < k[zy,...,7,]. Consequently, a = Z(X) and thus Z(Z(X)) < Z(a) =Y.
This is in particular true for Y = X.
(iif) This is the Nullstellensatz 1[16]
(iv) We have
I(XvY)={feklz,...,zn] | flz) =0forallze X Y}
={feklxr,...,zn]| f(x)=0forallz e X} n{f €k[z1,...,z,] | f(x) =0forall zeY}
=Z(X)nZ(Y)
and
Z(X\Y) ={f€kl[x1,...,zn] | f(x) =0 for all z e X\Y}
={feklxy,...,zn] | f(z) -g(x)=0forallz e X and g € Z(Y)}
={feklrr,...,on]| f-I(Y) = T(X)}
=I(X):Z(Y).
For the second step we used (ii) and that Y is closed.
(v) Let f € A(X) and suppose that f¥ = 0. Evaluating f at a € X gives f¥(a) =

(f(a))* =0, whence f(a) = 0 since k is a field. In particular, f =0 in A(X), that
is, A(X) has no nontrivial nilpotent elements and is thus reduced. O

Furthermore, with Z(X) we can associate a k-algebra giving the functions on an
affine variety.

19. Definition (Coordinate rings). If X < A" is an algebraic set, we define
its coordinate ring A(X) of X to be

A(X) = k[z1, ..., 2.]/T(X).

20. Remark. In particular, a coordinate ring is a finitely generated k-algebra.
Furthermore, Z(X) is radical by Proposition 1 (v), so that a coordinate ring
must be reduced. Conversely, any finitely generated reduced k-algebra A arises
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as the coordinate ring of an affine variety. Indeed, Let A be a finitely gener-
ated algebra which is necessarily of the form A =~ k[zy,...,z,]/a. Put X =
Z(a) < A™. If A is reduced, then a is radical so that Z(X) = /o = a. Hence
A(X) = k[zy,...,z5]/a = A. Note that two different affine varieties (e.g. Z(x)
and Z(y) in A?) can have isomorphic coordinate rings (e.g. k[t]). We will see later
(Proposition 1 that the coordinate ring determines the affine variety up to
isomorphism.

21. Examples.

(i) my = (z1—aq,...,2n—ay) is a maximal ideal of k[x1, ..., 2,] corresponding
to the point {a} = Z(m,), then its coordinate ring is k[z1,...,z,]/m, = k
(cf. [O]l6] - any “function” on {a} must be a constant.

(ii) Since Z(A™) =0, A(A") = k[z1,...,z,]. We define

Aln] := A(A") = k[z1,...,zp]

and often use A[n] as a shorthand notation for k[z1,...,z,].

22. Exercise.

(i) Let X = Z(2? —y) < AZ. Show that A(X) is isomorphic to a polynomial ring
in one variable of the form k[t].
(i) Let Y = Z(zy — 1) < A%, Show that A(Y) is not isomorphic to some k[t].

Proof. (i) By definition, A(X) = k[z,y]/(z* —y). Since § = 22, A(X) = k[z,7°] =
k[Z]. Formally, an isomorphism is provided by k[t] — A(X) is induced by the
assignement t — .

(ii) Here, A(Y) = k[z,y]/(xy — 1) so that T = 1/y. Hence A(X) = k[Z, 1/Z] which
contains a unit which is not in k. Thus A(X) cannot be of the form k[¢]. O

23. Remark.

(i) We can think of A(X) as the ring of polynomial functions on X viewing
an equivalence class f € A(X) asamap f : a € X — f(a) € k. Since f
is determined up to elements in Z(X) this is indeed well-defined. Further,
A[n] = k[z1,...,2,] and A(X) are Noetherian rings by Section [00.3] Choos-
ing generators Zi,...,Z, of A(X) is the same thing as choosing coordinates
T1,...,T, on A™ which give rise to “coordinates” z; on X. Of course, the Z;
are not, in general, linearly independent (they could be zero for instance).

(i) If for a € X, we let m, < A(X) be the ideal of functions vanishing at a, then
the assignement a — m, gives a 1 — 1 correspondence between the points
of X and the maximal ideals of A(X). Indeed, we have a correspondence
between points a € X and maximal ideals m, < A[n] which contain Z(X) by
Corollary[0]7] The latter correspond to maximal ideals in A(X) = A[n]/Z(X).

A necessary algebraic condition for irreducibility is this.
24. Proposition (irreducibility and prime ideals). Let X < A" be algebraic.

If X is irreducible (and thus an affine variety) < Z(X) is a prime ideal in A[n],
that is, the coordinate ring of X is an integral domain.
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Proof. =) Let f-ge€ Z(X). Hence (f-g) < Z(X) so that by Proposition 1we have
Z(fg) = Z(f) u Z(9) o Z(Z(X)) = X. In particular, we have a decomposition
into closed subsets X = (X n Z(f)) u (X n Z(g)) so that either X < Z(f) or
X < Z(g), whence f € Z(X) or g € Z(X).

<) Let p = Z(X) be prime, and assume that X = X; u X5, where X; are two closed
subsets of X. Then p = Z(X) = Z(X;) mI(Xg) by Proposition 1[T8] hence Z(X) =
Z(X;) or Z(X) = Z(X2) by Proposition Applying Z and Proposition 1.
again implies X = X; or X = X5. Hence X is irreducible.

25. Example.

(i) Consider a point a = (a1, ...,a,) € A™. Geometrically it is obvious that it is
irreducible. Hence Z({a}) is prime. Indeed, as we have seen in Example [O}f5|
its associated ideal (21 — ay,...,2, — a,) is maximal in A[n].

(il) A" = Z(0). It follows 1mmed1ately (1) that A™ is irreducible (try to prove it
starting from the definition).

26. Exercise. Let X = Z(2? —yz,x(z — 1)) < A}. Show that X is a union of
three irreducible components. Describe their prime ideals.

Proof. We have
X = Z(@® —yz,2(2 — 1)) = Z(z? —y2) n Z(z(z — 1))
=Z(2? —y2) n (Z(x) U Z(2 — 1))
= (Z(@® —y2)n Z(2)) U (Z(2® —y2) N Z(z — 1))
= Z(z,y) U Z(x,2) U Z(2* —y,z — 1).

Hence X is the union of the irreducible components Z(x,y), Z(z,2) and Z(2? —
y,z — 1) whose coordinate rings are isomorphic to k[t]. O

We have natural notions of subvarieties and product of varieties.

27. Definition (locally closed subspaces and affine subvarieties). A
subset of a topological space is called locally closed if it an open subset of its
closure, or equivalently, if it is the intersection of an open set with a closed set.
If X < A' is a quasi-affine variety, and Y is an irreducible locally closed subset,
then Y is open in its closure Y, a closed irreducible subset of X. In particular,
Y = X n Z(a) = Z(Z(X) + a) € A" is again an affine variety, and Y inherits a
natural structure of a quasi-affine variety being an open subset of Y. We call Y a
subvariety of X.

28. Exercise (subvarieties of X and prime ideals of A(X)). Let X < A"
be an affine variety. Show that there is a 1 — 1 correspondence between closed
subvarieties of X and prime ideals in A(X).

Proof. If Y < X is a closed subvariety of X, then Y =Y = Z(Z(X) + a), where
p=7Z(X) +ac A[n] is a prime ideal (Y is irreducible!) containing Z(X). Hence
p corresponds to a prime ideal in the quotient A(X) = A[n]/Z(X). Conversely,
if ¢ ¢ A(X) is a prime ideal, then q is the image of a prime ideal p < A[n]
containing p. Then Y = Z(p)n X = Z(p+Z(X)) = Z(p) is closed in X (being the



46 UNIVERSITAT STUTTGART

intersection of X with an algebraic set of A™) and irreducible (being defined by a
prime ideal). O

29. Proposition (product of affine varieties). The product X xY of two
affine varieties X < A™ and 'Y < A™ with coordinate rings A(X) and A(Y') is also
an affine variety with coordinate ring A(X xY) = A(X) @ A(Y).

Proof. Indeed, it is clear that if X = Z(a) and Y = Z(b) for a < k[z1,..., 5]
and b < k[x1,...,Zn], then X x Y can be identified (as a set) with Z(a + b), the
zero locus of the ideal in k[z1,...,Z,4m] generated by a + b. The only point to
check is irreducibility. So assume that we had a decomposition X x Y = Z; U Z,.
Projection on the first resp. second factor induces isomorphisms X x {b} =~ X for
allbeY and {a} x Y =Y for all a € X. In particular, the fibres of the projections
are irreducible. Further, we obtain a decomposition

X x {b} = (X x {b} n Z1) U (X x {b} n Z3).
Hence either X x {b} nZ17 = X x {b} or X x {b} " Zy = Z3. Let Y; :={be Y |
X x {b} < Z,;}. But this yields a decomposition of ¥ into the closed sets Y7 U Y>
so that by irreducibility of Y we have either X xY = Z; or X x Y = Z5 (note

that V; = (,cx{a € X | (a,b) € Z;} is indeed closed as an intersection of closed
sets). O

30. Remark. Note that the topology on X x Y induced from A"™*T™ is not
the product topology (which we can define independently from any affine struc-
ture). For instance, the construction above yields A! x Al = A2, but this is not
homoemorphic to A x Al (cf. Exercise 1.]10)).

Let us summarise the correspondence between alegebra and geometry.

algebraic sets in A" «—— radical ideals of A[n]

affine varieties in A™ «—— prime ideals of A[n]

points in A" «—— maximal ideals of A[n]

A" «— (0) < A[n]

%] «— (1) c A[n]

product X x Y «— tensor product A(X)®; A(Y)
closed subvarities of X «— prime ideals in A(X)

points of X «—— maximal ideals in A(X)

Next we investigate further topological consequences coming from the fact that the
coordinate rings are finitely generated.

31. Definition (Noetherian topological spaces). A topological space is
called Noetherian if it satisfies the d.c.c. for closed subsets.

32. Example.

(i) The affine space A™ is Noetherian for A[n] = k[x1,...,x,] is a Noetherian
ring. Indeed, a sequence of closed sets X; > X3 D ... corresponds to an
ascending sequence of ideals Z(X1) = Z(X3) < ... which eventually becomes
stationary. This also explains why we call this topology Noetherian instead
of Artinian.
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(ii) If A is Noetherian, then so is Spec A as a topological space for its closed sets
are of the form Z(a) for ideals a of A (cf. Exercise |0}35]).

The following property holds in any Noetherian topological space.

33. Proposition and Definition (irreducible components). In a Noetherian
topological space, every nonempty closed subset X can be expressed as a finite union
X = Xju...u X, of irreducible closed subsets X;. If we require that X; < X;
for i % j, then the set {X;} is uniquely determined. Its elements are called the
irreducible components of X.

Proof.

Step 1. Existence. Let X be the set of nonempty closed subsets with no decom-
position as required. In particular, no element of ¥ can be irreducible. We claim
that ¥ = ¢J. Assume to the contrary that 3 + (. Then by the d.c.c., ¥ has a
minimal element, say X. Since X is not irreducible, it must have a decomposition
X = X1 u Xy into closed proper subsets X;, & X. However, X; o must have a
decomposition into irreducible components by minimality of X which would give
one for X, contradiction. Hence ¥ = &.

Step 2. Uniqueness. This is easy, see also [Hal Proposition I.1.5].

34. Corollary (Noetherian rings have only finitely many minimal primes).
If a is an ideal of a Noetherian ring A, then there are only finitely many primes of
A containing a and which are minimal with this property. In particular, any Noe-
therian reduced ring admits an injection A — @ A/p, where the sum is taken over
all minimal primes of A, and whose image intersects any summand nontrivially.

Proof. We apply Proposition 1[33]to the topological space Spec A. We can then de-
compose Z(a) into a finite number of components which correspond to the minimal
primes containing a. Now apply Exercise O

35. Remark. In particular, we see that by Corollary [Of17] any radical ideal a of
a Noetherian ring is the intersection of a finite number of minimal primes,

a= ﬂ P=ﬂpi7

acp minimal i=1

which in the case of A = k[x1,...,x,] gives precisely the decomposition into irre-
ducibles: Z(a) = Z(,p:) = U, Z(pi)-

36. Corollary (decomposition into irreducible subsets). Every algebraic set
X < A™ can be (up to ordering) uniquely expressed as a union of affine varieties, no
one containing another. These correspond to the minimal prime ideals containing
(X).
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Proof. Instead of appealing to the general topological theory we can give a direct
algebraic argument here. Namely, let X be the set of ideals Z(X) < k[z1,..., 2]
of algebraic sets X which do not have a composition as in Proposition 1[33] The
assertion is that ¥ = ¢, so oppose to the contrary that ¥ + ¢ZJ. By the Noetherian
property of A[n] there is a minimal element of ¥, say Z(Y). Now Y is itself not
irreducible (for then it cannot be an element of ). Hence Y = Y] u Y5 for two
strictly contained closed subsets of Y. In particular, ¥; ¢ ¥ so they do have a
decomposition as in Proposition 1[33] O

37. The role of zerodivisors. Let X < A™ be an algebraic set whose coordinate
ring A(X) is not an integral domain. In particular, (0) is not a prime ideal. Then we
have zerodivisors f, g # 0 in A(X) such that fg = 0. Recall that by Corollary
A(X) is either reduced, or has more than one minimal prime. To see what these
two cases mean geometrically, consider the coordinate rings

(i) A(Z(a%)) = klz1,22]/(27), where f =g = 213

(ii) A(Z(z122)) = k[x1,22]/(x122), where f = 21 and g = z».

The first case is the coordinate ring of Z(x?) = the zp-axis in k2. We can
think of k[z1,22]/(2?) as the set of polynomials {f(x2) + 21 f(x2) | f € k[x]}.
Put differently, A(Z(2?)) remembers the x;-derivative df/0x1(0,x2) of a general
f(z1,22) € k[x1, z2] at each point (0,22). This is sometimes pictured as a thickened
z1 = 0 line (see Figure 1. Although this seems to rely on a rather unalgebraic
intuition it is really at the heart of scheme theory as we will see below. In the second
case, T1 and Ty generate two prime ideals in A = A(Z(z122)) = k[z1, 22]/(z122)
for (k[z1,22]/(z122))/((%1)/(z132)) = k[z1,22]/(z1) = k[zz] which is integral
etc. Since Z(z;) are just the irreducible components of Z(zjx2) these prime
ideals are minimal. In this way, we can see k[z1,x2]/(z122) as a subring of
A/(Z1) ® A/(T2) =~ k[x1] @ k[zz] with Z; and Zy mapping to different factors so
that their product is zero, cf. Corollary 1[34]

Projective varieties. There a various reasons to study not only affine, but also
projective varieties. Historically, projective spaces were introduced in order to have
a properly working intersection theory. For instance, two lines in a plane intersect
precisely in one point if they are not parallel. To get a uniform theory where any
two lines intersect one adds to every line the point at infinity (identifying the two
ends of the line), then two parallel lines also intersect, namely at “infinity” (think
of two rails!) (for a very good explanation of this viewpoint, see also [CLS, Chapter
8.1]).

To define the projective space, consider the natural action of the multiplicative
group k* on A7T'\{0} by scalar multiplication. As a set, the n-dimensional
projective space is

PP .= A"\ {0} /k*.

Equivalently, we can think of P" as the set of lines in k"*! passing through the
origin.

38. Examples. It is easy to see that

(i) PL = St (see Figure 1;
(ii) P2 = R? U P} (see Figure) 1@.
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FIGURE 5. The bijection P} =~ S!

FIGURE 6. The bijection P ~ R?* U P}

More generally, P} = k™ U Pz_l for any field, see Example 1 below.

For concrete computations it is useful to have a coordinate description. Fix coordi-
nates xg,...,z, on A"l A line through the origin is then specified by any point
a = (ag,...,a,) € A"1\{0}. We denote its equivalence class by 7(ag,...,a,) =
[ag : ... : ayp], that is, [ag : ... : ap] = [Aag : ... : Aay,] for A € k*, and we think
of m: A"TN\{0} — P" as a projection map. In particular, P* = {[ag : ... : ay,] |
(ag,...,a,) € A" 1\{0}}. If a = [ag : ... : a,] € P", then the n + 1 numbers a; are
called the homogeneous coordinates of a.

The geometric objects we consider in P" are given by homogeneous equations. A

polynomial function f(zg,...,z) = > ¢ig.ip T ... - air is called homoge-
neous of degree d if all the monomials have the same degree d = ig+ ...+ i,. In
particular, f(Azo, ..., \z,) = A f(zo,...,7,) so that the zero locus

Zp(f) = {[ao el an] e P | f(a07--~7an) :O}

is well-defined.
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39. Example. We call the set H; = Z,(z;) = {[ao : ... : an] € P" | a; = 0} the
i-th hyperplane at infinity. As a set, it is bijective with P*~!'. Note that its
complement U; := H can be identified with k™ via the map

wi U= k", wi([ao:...:an]) = (ao/ai, ..., an/a;)
where we omit a;/a; = 1 (see also Exercise 1[9).

It is ultimately the action of k* on k[xo, ..., 2, ] which singles out the homogeneous
elements in k[xo, ..., x,], or more invariantly, gives rise to a grading.

40. Graded rings and modules. A graded ring is a ring S together with a
direct sum decomposition S = P -, Sq as Abelian groups such that

SgSe € Sqye ford, e=0.
The prime example is the polynomial ring

S[n] = klzo,...,zn] = P k[zo, ..., z0]as
d=0
where k[xg,...,zn]q is the vector space of homogeneous polynomials of degree d.
Of course, S[n] = A[n + 1] as a polynomial ring. We write S[n] if we want to
emphasise this precise grading into homogeneous polynomials.

41. Remark. If we extend the k*-action on A"*! to A[n + 1] by regarding
f € A[n+ 1] as a polynomial function, and set A(f(zo,...,2n)) = f(Azg, ..., Azy),
then Sy = vector subspace of S on which k* acts with weight d, i.e. f € Sy <

() = X4 f.

In general, a homogeneous element of S is simply an element of one of the groups
Sq. We refer to d as the degree of the element. In the decomposition f = fo +
fi+..., fae Sq, fqis refered to as a homogeneous component of f. For future
reference, we let

Sp = {f € S| f homogeneous},

i.e. S, is the set of homogeneous elements of S. An ideal a is homogeneous if and
only if it is generated by homogeneous elements. Equivalently, a is homogeneous if
and only if the homogeneous of any f € a are again in a, i.e.
a=@P(an Sq).
d=0

Note that any homogeneous element f of a homogeneous ideal a can be uniquely
written as > g;f; where f; are the homogeneous generators of a and g; are homo-
geneous elements of S. Further, the sum, the product, the intersection and the
radical of homogeneous ideals are again homogeneous. Finally, to test whether a
homogeneous ideal is prime it is sufficient to show that for any homogeneous ele-
ments f and g € a with fg € a we have f e a or g € a. If S is a graded ring, we

let
Sy =@ Sq
d>0
be the (maximal) ideal consisting of all homogeneous elements of degree greater
than zero. For instance if S = S[n], then S; = (xo,...,zp).

If S is a graded ring, then a graded S-module is an S-module M together with
a family (My)4=o of subgroups of M such that

M = @Md and SeMd C Md+e

for all d, e = 0. In particular, and My is an Sp-module. An element x € M, is
called homogeneous of degree d; any element z € M has a decomposition into
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a finite sum of its homogeneous components Y z,. If M and N are graded
S-modules, then a morphism of graded A-modules ¢ : M — N is a degree
preserving module morphism, i.e. o(My) < Ny for all d = 0.

42. Exercise (Noetherian graded rings). Let S be a graded ring. Are equiva-
lent:

(i) S is a Noetherian ring.
(ii) So is Noetherian and S is finitely generated as an Sp-algebra.

Proof. (ii)=>(i) Since S = Sy[z1,...,z,]/a this follows from Hilbert’s basis theo-
rem and

(i)=>(ii) Since Sy =~ S/S,, Sy is Noetherian. Further, S, is an ideal of S, hence
finitely generated as an S-module, say by the (homogeneous) elements x1, .. ., x, of
S. Let d; denote their respective degree > 0. Let S’ be the subring of S generated
by x1,...,x, over Sy (this is the smallest subring containing Sp and the z;). In
particular, S’ is a finitely generated Sy algebra. We need to show that S; < S’
for all d. By induction on d. By design this is true for d = 0. Next let d > 0
and z € Sg < S;. Then z = Y a;z; with a; € S. Since d; > 0, the degree of the
homogenous components of the a; must be smaller than d = deg(a;) + d; > 0, thus

a; € S’. Therefore, the a; = Y, x;b; with b; € Sy so that finally xz € S’. O
As noted above, a homogeneous polynomial f € k[xg, ..., x,]q yields a well-defined
function P™ — {0, 1} also denoted by f and which is given by f([ag:...:an]) =0

if f(ag,...,an) =0 and 1 if not. For any T' < S[n],, we set
Z,(T) :={aeP"| f(a) =0 for all feT}.

Of course, T defines also an affine algebraic set Z(T) = A"*! which is why we write
Z,(T). The relation between Z,(T) and Z(T') will be discussed in Proposition 1[56]
If the context makes it clear that we are working in projective space we sometimes
simply write Z(7T). If a is a homogeneous ideal, then we set

Zy(a) = Z,({feank[zg,...,zn]qa | d = 0})

= Z,({homogeneous polynomials of a}).
On the other hand, if X < P™ we define the homogeneous ideal generated by
X to be
I(X) = ({f € k[zo,...,xzn]a | d = 0, f(a) =0 for all a € P"})
= {ideal generated by homogeneous polynomials f with f|x = 0}.

43. Definition (algebraic sets of P" and their coordinate ring). A subset
X of P™ is algebraic if there exists a set T < S[n];, of homogeneous polynomials
such that X = Z,(T"). The homogeneous coordinate ring of X is

S(X) = S[nl/T(X).

44. Remark.

(i) The coordinate ring of P is S[n], that is, k[zg,...,x,] together with the
grading defined by homogneous polynomials. If we forget the grading, then
k[zo,...,z,] is just the coordinate ring of A"™! which we continue to write
Aln +1].

(ii) Any projective algebraic set can be written as the zero locus of finitely many
homogeneous polynomials of same degree since Z(f) = Z(xdf,...,xdf).
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45. Example.

(i) Let L = A" be a linear subspace of dimension k + 1 which is given by the
linear equations, say, Tgio = ... = Tp4+1 = 0. Since these are homogeneous
they define a projective variety in P", which is the image of L under the
projection A"T1\{0} — P". This is a so-called linear subspace of P". Once
we have a notion of morphisms (which we do not have yet for varieties!) it
easily follows that L is isomorphic as a projective variety to P*.

(ii) Consider

X ={[ap :...:a3] | rank ( Ztl) Z; Zi > < 1}

This is an example of a so-called determinantal variety. Namely, X = Z,(zoza—
23, 2or3 — T179, T173 — T3) is given by the common zero locus of the three
2 x 2-minors of the matrix given in the definition of X.

46. Proposition.
(i) If {a;} is a family of homogeneous ideals, then

N 2o(a) = Z,(| o)
(ii) If ay,2 are two homogeneous ideals, then

Zp(a1) U Zp(a2) = Zp(araz).

(iii) The empty space and P™ are algebraic sets.

Proof. Similar to Proposition 1[5 O

47. Definition (Zariski topology on P"). The open sets of the Zariski
topology are the complements of algebraic sets.

48. Remark. As for affine varieties, we have
(1) T1 C TQ C S[’n]h = Zp(Tl) D ZP(TQ),
(iii) for any two subsets X1, Xo < P, T(X; U Xo) = I(X1) n Z(X2);
(iv) for any subset X c P", Z,(Z(X)) = X.
The statement corresponding to the Nullstellensatz (i.e. Z o Z(a) = +/a) will be
discussed in Exercise 158

49. Proposition (standard open cover of P"). Fiz homogeneous coordinates
Xoy...,Tn on P". For i = 0,...,n we consider the sets U; = {x; + 0} from
Ezample 1[39. Show that
(i) the U; provide an open cover for P™.
(i) @i : U; > A", i([xo: ... xn]) = (X0/Tiy .- - Eiy. .. Tn/x;) (where * denotes
omission) defines a homeomorphism between U; and A™.

For T c S[n]y try to write p(Z,(T) n Up) as Z(T"), T' < A[n].
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Proof. (i) Since U; = Z,(x;)°, the sets U; are open. Further, if a =[ag:...:a,] €
P™, then there exists at least one a; + 0. Hence a € U; so that the open sets U;
cover P,

(ii) Without loss of generality we assume ¢ = 0 and consider the maps a : S[n], —
A[TL] = k[yla s 7yn] defined by O[(f) = f(]-vyla s 7yn) and B : A[TL] - S[n]h
defined on polynomials g of degree d by 8(g9) = xlg(z1/xo,...,7n/20). The map
@ = o is clearly bijective. We show that it identifies the closed subsets of X <
U = Uy with those of A™. Let X be the closure of X in P". Let T < S[n];, be such
that X = Z,(T) and put 7" = «(T). We claim that ¢(X) = ¢o(Z,(T) nU) =

Z(T") < A™. Indeed, if [ap : ... : ay] € X and f € T of degree d, then

al(f)e(lag : ... a,)])) = f(1,a1/ag,...,an/ag) = agf(ao,al, ceyap) =0,
hence ¢([ag : ... : ap]) € Z(17”). On the other hand, if y = (y1,...,yn) € Z(T"),
put @ = [l :y; : ... : yn]. Then a € U and if f € T, then f(1,y1,...,yn) =

al(f)(i,...,yn) = 0 so that also a € X, i.e. a € Un X = X. Hence ¢ maps
closed sets in U to closed sets to A". Conversely, let Y < A™ be closed. Then Y =
Z(T") for some subset T of k[y1,...,yn]. We claim that ¢~ (Y) = Z,(B(T")) n
Uy which is closed in Up. Indeed, let a = [ag : ... : an] € ¢ }(Y). Then
a € U and f(ai/ag,...,an/ap) = 0 for all f € T'. Hence B(f)(ao,...,an) =
alf(ai/ao, ... ,an/ag) = 0, that is, ¢(a) € Z(T'). On the other hand, let b =
[1:01:...:b,] € Z,(8(T")) nUp. Then ¢(b) is defined, and if f € T”, then
(b)) = B(f)(1,b1,...,b,) =0, whence be p~1(Y). O

50. Remark. In fact, the maps ¢; from Exercise 1[49] actually identify U; with
A" as varieties, see Lemma 1]147]

51. Definition (projective variety). An irreducible algebraic set in P" to-
gether with the induced subset topology is called a projective variety. A quasi-
projective variety is an open subset of a projective variety.

The following exercise gives an easy way to construct projective varieties from affine
ones.

52. Exercise (projective closure of an affine variety). If X < A"™ is an affine
variety, and we identify A™ with Uy via the map po of Ezercise 1[79, then we call
X < P the projective closure of X. Using the notation of the previous exercise,

show that Z(X) is the ideal generated by S(Z(X)).

Proof. If g € Z(X), then B(g) = zlg(z1/z0,...,Tn/T0) is homogeneous of de-
gree d = degree of g and vanishes on X, hence the closure of X in P?, i.e. X,
is contained in the closed set Z(B(g)). It follows that B(g) € Z(X) n S[n]x.
Conversely, any homogeneous f € Z(X) is in the image of # (indeed, taking

glar,...,an) = f(1,a1,...,a,) gives B(g) = f), whence the result. O

53. Example. Consider the conics X1 = Z(z3 — %) and Xo = Z(z1272 — 1) in A2
of which we think as subsets of Uy in P2. Under this identification the projective
closures of X; and X, are X; = Zp(acomfx%) and Xy = Zp(xlngxg) respectively.
Geometrically, we obtain X; and X, by adding the points “at infinity” [0 : 0 : 1]
respectively {[0:1:0], [0:0: 1]}. Note that the lines defined by (0,1) and (1,0)
and (0,1) in A? are just the asysmptotics of the curves X; and X, in A2. In this
way, we can think of X; — P? as the projective complezification of X; — A2; the
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projective closure of a parabola or a hyperbola in A? gives rise to the same conic
(i.e. hypersurface defined by a homogeneous polynomial of degree 2) in P2,

54. Proposition (irreducible projective algebraic sets). For X < P"
algebraic are equivalent:

(i) X is irreducible;

(ii) Z(X) is prime;

(iii) S(X) is an integral domain.
Proof. This follows as in the affine case: If X = X; U X, then Z(X) = Z(X;) n
Z(X5). Hence, if Z(X) is prime, then either Z(X) = Z(X;) or Z(X3), whence X =
X1 or X,. Conversely, if Z(X) is not prime, then there exists a product f-g € Z(X)
with f, g ¢ Z(X). Then X = (X n Z,(f)) u (X n Z,(g)) gives a decomposition so
that X is reducible. O

Another way to make contact with affine varieties is the cone construction.

55. Definition.

(i) A nonempty set X = A"*! is called a cone if it is invariant under the k*-
action on A™*!, that is,

(ag,...,an) € X = (Aag, ..., a,) € X

for all A e k*.
(ii) For a nonempty set X < P™ the cone

C(X) :={(x0y-- - xn)|[To: ... xn] € X} U{0} c A"T!
is called the cone over X (see Figure 1@.

we L

FIGURE 7. The cone over Y

56. Proposition (ideals of projective algebraic sets and their cones).
(i) X c A" is a cone = I(X) c A[n + 1] = k[0, ..., z,] is homogeneous.
(i) Let a < S[n] be a homogeneous ideal. If X = Z,(a) < P", then its cone is
given by C(X) = Z(a) = A" In particular, C(X) is indeed a cone in the
sense of Definition 1[53 (i).
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(iii) Let X < P™ be a projective algebraic set with homogeneous ideal Z(X) < S[n],
then Z(C(X)) = Z(X) as an ideal of A[n + 1]. In particular, X is irreducible
< C(X) is irreducible, and A(C(X)) = S(X).

Hence, there is a 1 — 1 correspondence between projective algebraic sets in P and

affine cones in A"tT,

Proof. (i) If X is a cone, f € Z(X), and a € X, then f(Aa) = > fa(Aa) =
S Adf(a) = 0. Hence fy(a) = O since k is infinite, so f; € Z(X). The converse
is obvious.

(ii) The inclusion Z(a) < C(X) is clear. So let a = (ag,...,a,) € C(X). Then
m(a) = [ag : ... : an] € X so that f(ag,...,a,) =0 for all f € a. Hence C(X)
Z(a). In particular, Z(X) = +1/a is homogeneous since a is homegenous. Hence
C(X) is a cone by (i).

(iil) Since C'(X) is a cone, Z(C'(X)) is homogeneous, and a homogeneous polynomial
feZ(C(X)) if and only if f € Z(X). O

57. Example. We have C(P") = A"*!. In particular, Z(P") = Z(A"*!) = (0)
so that P" is irreducible.

58. Exercise (projective Nullstellensatz). For any homogeneous ideal a
S[n] such that Z,(a) £ & we have Z(Z(a)) = /a. In particular, there is a 1 —1
inclusion reversing correspondence between algebraic sets in P™ and homogeneous
radical ideals of S not equal to S, .

Proof. Let X = Z,(a) < P". By Proposition 156 and the usual Nullstellensatz,
Va=I(Z(a)) = Z(C(X)) = Z(X) = Z(Z,(a))-

59. Exercise. For a homogeneous ideal a = S[n] are equivalent:
(i) Zp(a) = in P";
(ii) va = either S[n] or Sy = @, - Sa;

(iii) Sq < a for some d > 0.

Hint: For (i)=(ii): Consider the cone of Z,(a).

Proof. (i)=(ii) If Z,(a) = & in P, then its cone in A"*! is either Z(a) = ¢, i.e.
a= (1), or Z(a) = {0}, i.e. a = (mg,...,x,). Otherwise, there would be a point
0 # a € Z(a) and by homogeneity, Z(a) would contain the entire line {a) spanned by
a. In the first case, Z(Z(a)) = /(1) = S[n] while Z(Z(a)) = v/(z0,...,Zn) = S
in the second.

(ii)=>(iii) In both cases /a contains the monomials x; so that z* € a for some m.
In particular, S, (,+1) © @ as any monomial of degree m(n + 1) must have at least
one factor of the form .

(iii)=>(i) Since z{ € Sy < a, Z,(a) = (_y Zp(zd) = &. O

60. Remark. Because of (ii) in the previous exercises, the maximal ideal S,
corresponds to the empty set and is therefore sometimes called the irrelevant
ideal.
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61. Definition (variety). A variety (over k) is any affine, quasi-affine,
projective or quasi-projective variety. A subvariety of a variety X is an irreducible
locally closed subset which inherits from X the structure of a quasi-affine or -
projective variety.

Varieties will be the objects of our category. Next we need the morphisms; before
we can define these, we need to discuss functions on varieties.

62. Remark. Some authors consider a more general notion of variety obtained
by glueing affine varieties (cf. for instance [GaCAl) via isomorphisms, similar to
the notion of a differentiable manifold obtained by glueing open sets of R™ via
diffeomorphisms (the isomorphisms in the catgeory of differentiable manifolds).
We call this more general object an abstract variety which will arise as the special
case of a still more general object, namely a scheme, to be discussed in Section [4]

63. Exercise (varieties covered by Noetherian spaces). If X is a variety
which is covered by finitely many Noetherian subsets, then X is itself Noetherian.
Conclude that P™ is a Noetherian topological space, and that any algebraic subset of
P™ can be written uniquely as a finite union of irreducible components, i.e. closed
irreducible sets, no one containing another.

Proof. Assume that X; D X5 o ... is an infinite chain of closed subsets of X. Since
the U; are Noetherian, the sequence X; n U; must become stationary for all ¢, that
is, there exists an integer N such that X; nU; = X; nU; for all j, I > N and all 4.
Hence X; = |J,(X;nU;) = X; forall j, 1 > N, i.e. the sequence becomes stationary.
For instance, the open cover of P" provided by Proposition 1[49)immediately implies
that P™ is Noetherian (of course, we could also argue by the associated chain of
ideals Z(X;) in the Noetherian ring S[n]). The decomposability of algebraic sets
follows from Proposition 1[33} O

1.2. Regular functions and sheaves. A function f on X is a map X — Al.
We usually abuse notation and simply write X — k though we will think of £ as
affine space endowed with its Zariski topology (in the case of £ = R or C, another
natural choice would be the Euclidean topology, for instance if we considered C'®
or holomorphic functions) We recall that k is algebraically closed, hence infinite, so
we can freely identify polynomials in n variables with polynomial functions A" — k
and thus with functions on X by restriction.

64. Definition (regular functions).

(i) Let X be a quasi-affine variety. A function f : X — k is regular at a € X
if there is an open neighbourhood V of a in X, and polynomials g, h €
k[z1,...,2,] such that h is nowhere zero on V, and f = g/h on V. If f is
regular at any point a € U of an open set of X, then we call f regular on U.

(ii) Let X be a quasi-projective variety. A function f : X — k is regular at
p € X if there is an open neighbourhood V of a in X, and polynomials g,
h e S(n) = k[zo,...,x,] of the same degree, such that h is nowhere zero on
V,and f = g/hon V. If f is regular at any point a € U of an open set of X,
then we call f regular on U.
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(iii) If X is a variety, we denote by Ox (U) or simply O(U) the regular functions
on the open subset U of X. Note that because regularity of a function was
defined for quasi-affine resp. quasi-projective varieties, Ox (U) makes actually
sense.

65. Remark.

(i) The degree assumption in the quasi-projective case ensures that the quotient
f/g is indeed a well-defined function (while f and g are not unless they vanish).
(ii) From the definition it follows that Ox (U) forms a ring.
(iii) We actually have Ox (X) = A(X) as we will prove in Proposition 1[94] below.
Of course, the inclusion O is obvious.

66. Proposition (continuity of regular functions). A regular function is
continuous.

Proof. We consider the case of a quasi-affine variety; the projective case works
similarly. We show that the preimage of a closed set under a regular function f is
again closed. Since closed sets in A! are finite collections of points it is enough to
show that f~1(a) is closed for any a € Al. Note that a subset Z of a topological
space X is closed & Z can be covered by open sets U such that Z n U is closed in
U for each U. By definition of regularity, we can cover X by open sets U such that
f = g/h with h nowhere vanishing on U. Then f~'(a) nU = {pe U | g(p)/h(p) =
a}. Since g(p)/h(p) = a < (g — ah)(p) = 0 we have f~ (a) "nU = Z(9 —ap) n U
which is closed with respect to the subspace topology of U. Hence f~!(a) is closed
in X. O

Since nonempty open subsets of irreducible spaces are dense, cf. Proposition
we immediately obtain the following

67. Corollary. A regular function on a variety is determined by its restriction to
any nonempty open subset.

Proof. Tt is enough to show that f|y = 0 on a nonempty open subset U of X implies
f=0on X. Indeed, U = f~1(0). Since f is regular, thus continuous, the latter set
is closed and thus contains the closure U of U. But since U is dense, U = X. O

68. Definition (ring of regular functions at a point and function fields).
Let X be a variety.

(i) For a € X we define the local ring of a on X, Ox , or simply O, to be the
ring of germs of regular functions on X near a. Put differently, elements of
Ox.q are equivalence classes [U, ¢] where ¢§ &+ U < X is open and contains
a, and f € Ox(U). We have [U,¢] = [V,¢] if o= on U V.

(ii) The function field K (X) consists of elements [U, ] of & + U < X open
and ¢ € Ox (U), where we identify [U, ¢] with [V,¢] if p =1 on U n V. Tts
elements are called rational functions.

69. Remark.
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(i) Since X is irreducible, any two nonempty open sets have a nonempty inter-
section, so that we can define addition and multiplication in a natural way:
[U, f1+[V,g] = [UNYV, f+g] etc., so that Ox , is indeed a ring. By Proposi-
tion [0]11} O, is a local ring, for the set of non-units m, = {[U, f] | f(a) = 0}
is an ideal (note that f-g(a) = 1 entails that both f and g do not vanish in a
and thus not in a neighbourhood of a). The residue field is O,/m, =~ k, where
the isomorphism is given by evaluation of an equivalence class [U, f] at a.

(ii) K(X) is indeed a field. If [U, f] £ [X,0], then we can restrict f to the
nonempty open set U* = U\(f~1(0))¢ where it never vanishes, and [U, f] =
[U*, f] is invertible with inverse [U*,1/f].

(iii) For a € U we have a natural sequence of injective maps

Ox(U) — OX@ — K(X)

The first inclusion assigns to f the equivalence class [U, f]. In fact, we can
think of a regular function f : U — k as a function whose germ at any point
x € X can be represented by a rational function, i.e. as a fraction pf polynomial
functions. The second inclusion assigns to a germ [U, f] the corresponding
equivalence class in K (X). We therefore usually think of Ox (U) and Ox , as
subrings of K (X).

70. Exercise (the local ring only depends on a neighbourhood). Let X
be a variety and V < X be an open subset. Show that Oy (U) (considering V as a
quasi-affine or -projective variety) equals Ox (U). Conclude that Ox o = Oy, for
any open subset V< X containing a.

Proof. We assume that X < A" is affine, the projective case being following along
the same lines. Since V' < A™ is a quasi-affine variety, f € Oy (U) if and only if f
is locally of the form hj/hg with h; € A[n]. Since U is open in V if and only if U is
open in X, we clearly have Oy (U) = Ox (U). Next consider the map Ox , — Ou,q
given by [U, f] — [UNV, flu~v]. This map is clearly injective and well-defined, for
the restriction of F' to any open set is again regular. Furthermore, it is surjective
for any [W, f] € Oy, is clearly also in Ox 4, W being open in X as well. O

Sheaves. To understand the topological nature of regular functions we give a basic
introduction to sheaf theory which we will develop more completely in subsequent
chapters.

71. Definition (presheaves). Let X be a topological space. A presheaf F of
Abelian groups on X consists of the following datas:

(i) For every open subset U < X, an Abelian group F(U);
(ii) for every inclusion V' < U of open subsets of X, a morphism of Abelian groups
puv @ F(U) — F(V) subject to the conditions
o F(&) = the trivial group {0};
e pyy : F(U) — F(U) is the identity map, and
e if W <V < U are three open subsets, then pyw = pyw © puv-

72. Remark. More generally, we can consider sheaves of rings, modules or any
other object in some fixed category C. In fact, if we let TOPyx be the cate-
gory consisting of open subsets of X as objects and inclusions as morphisms (cf.
Example then a presheaf defines a contravariant functor TOPx — C. For
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instance, we can consider a differentiable manifold/complex manifold/variety X
together with the sheaf Ox of rings which assigns to an open U < X the ring of
C* /holomorphic/regular functions on U. In this way, (X, Ox) becomes a ringed
space, i.e. a topological space X together with a sheaf of rings Ox of (continu-
ous) functions which is the starting point for any geometric theory in contrast to
topology.

73. Examples.

(i) Let X be a variety. For each open set U c X, let O(U) be the ring of regular
functions U — k, and pyy restriction of V' in the usual sense.
(ii) Similarly, we can define the presheaf of continuous/differentiable /holomorphic
functions on any topological/differentiable/complex manifold.
(iii) Let M be a topological/differentiable/complex manifold and E — M a topolog-
cial/differentiable /holomorphic vector bundle. Then £(U) := I'(U, E) is the
associated presheaf of sections.

In order to stress the analogy with functions and sections of vector bundles, the
group F(U) is also refered to as the sections over U. Consequently, we sometimes
use the notation I'(U, F) nadwrite s|y instead of pyv (s).

Next we define sheaves which are roughly speaking presheaves determined by local
data.

74. Definition (sheaves). A presheaf F on X is called a sheaf if for any open
covering {V;} of an open subset U of X, the following conditions hold:
(i) If s € F(U) is such that s|y, = 0 € F(V;) for all 4, then s = 0 in F(U) (“s is
determined by restriction to open subsets”, “local injectivity”).
(ii) If there exists s; € F(V;) for each i such that s;|v,~v; = sj|v;~v;, then there
exists s € F(U) such that s|y, = s; (“local compatible sections can be glued
together”, “local surjectivity”).

75. Examples.

(i) All the presheaves considered in the previous example are in fact sheaves. For
instance, consider O the sheaf of regular functions on a variety X. A
regular function on U which is locally 0 must be 0 on all of U. Further, a
function U — k which is locally regular is by definition regular. The same
applies to the the presheaf of continuous/differentiable /holomorphic functions.

(ii) Let X be a topological space and G an Abelian group. We define the constant
sheaf G on X as follows. Endow G with the discrete topology, and let G(U)
be the continuous functions U — G. Then for any connected set, G(U) = G,
whence the name. If U is an open set whose connected components are open,
then G(U) is a direct product of copies of G. Note that if we defined a
presheaf by G(U) = G for any nonempty open subset of X, then G is not a
sheaf. Indeed, take two disjoint nonempty open subsets U and V. Then if
s€ G(U) = Gandt e G(V) = G are not equal, they do not glue to an element
in G(U u V), yet they are compatible for the condition on the intersection is
vacuous.

(iii) If ¢ : F — G is a morphism of sheaves, then the presheaf given by the Abelian
groups ker ¢(U) = ker py < F(U) with restriction maps induced by restricting
the restriction maps from F to ker ¢, is actually a sheaf, the so-called kernel
sheaf of . If ker ¢ = 0, we say that ¢ is injective.
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76. Remark. The naive definition im ¢(U) := im ¢y of the “image sheaf” of ¢
only yields a presheaf. We will give a proper definition of the image sheaf further
below when we consider the “sheafification” of presheaves. For the definition of a
surjective morphism, see Exercise 1[36] below.

77. Definition (morphism of sheaves). If 7 and G are (pre)sheaves on X, then
a morphism ¢ : F — G of (pre)sheaves is a group morphism ¢y : F(U) — G(U)
which commutes with the restriction maps of F and G, i.e. oy o pfyy, = PLv © YU
An isomorphism is a morphism with two-sided inverse.

78. Example. Let O denote the sheaf of holomorphic functions on C with
the usual group structure by addition of functions, and O the sheaf of invertible
holomorphic functions with its multiplicative group structure. Then f € O(U) —
ef 1= exp(2mif) € O*(U) is a sheaf morphism, for e(/+9) = e/ . 9,

79. Remark. Because of their local nature, sheaves and their morphisms are
actually determined by any base of topology B. More precisely,
e if the assignement F(U), U € B satisfies the sheaf properties, then F can
be extended over all open sets;
o if py : F(U) — G(U) is a sheaf morphism defined for U € B, then ¢y is
uniquely defined for any open set,
see |[EiHa) I-12].

80. Definition (stalk of a sheaf). If F is a presheaf on X, and = € X, we define
the stalk F, of F at x to be the direct limit

lim F(U) = || F(U)/ ~

Usz Usz
where s € F(U) and t € F(V) are equivalent if there exists an open subset W <
U NV such that ppw (s) = pyw(t). Put differently, an element in F, is given by
an equivalence [U, s] where s € F(U) and where [U,s] = [V,t] if there exists an
open set W of U n'V containing x such that s|y = t|. In this way we may think
of the stalk as the group of germs of sections at x. If ¢ : F — G is a morphism
of sheaves, then for x € X we obtain the induced group morphism ¢, : F, — G,

defined by ¢, [U, f] = [U, ou(f)].

81. Example. The local ring O, is just the stalk of the sheaf of regular functions.

82. Exercise. Let ¢ : F — G a morphism between sheaves on X. Show that

(i) for each x € X, (ker @), = ker(p,);
(ii) ker ¢ is indeed a sheaf.

Proof. (i) We have (kery), = {[U, f] | x € U, f € ker oy} and ker(p,) = {[U, f] |
x e U, ¢i[U, f] :=[U,ou(f)] = 0€ G,}. The map which assigns [U, f] € (ker ), to
[U, f] € ker(p,) is therefore a well-defined injection. Conversely, if [U, f] € ker(p),
then there exists an open neighbourhood W of z in U such that oy (f)lw =
ow (flw) = 0, that is, [W, flw] € (ker ). Since [W, flw] = [U, f] this assigne-
ment is surjective.

(ii) Since ker pyy < F(U), and F is a sheaf by assumption, the injectivity property
of sheaves holds trivially. For surjectivity, let s; € ker oy, such that s;|y,~u, =
sjlu,~u,, where U; is an open covering of some open set U. Since F is a sheaf,
there exists s € F(U) such that s|y, = s;. Since ¢ is a morphism it commutes
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with restriction, whence ¢y (s)|lu, = ¢u,(sly,) = 0. By the injectivity property,
pu(s) =0in G(U), whence s € ker . O

83. Proposition. Let ¢ : F — G be a morphism of sheaves. Then ¢ is an
isomorphism < @, is an isomorphism for every x € X.

Proof. =) Clear.
<) We show that ¢y : F(U) — G(U) is a (group) isomorphism for any open subset
U of X. Then ¢ : G — F defined by ¢y = @51 is an inverse to .

Step 1. py is injective. Let s € F(U) and assume that ¢y (s) = 0. This means that
wz[U, s] = [U,(s)] =0 for all x € U. But ¢, is injective, whence 0 = [U, s] € F,
for all x € U. By definition, this means that for any x € U there exists an open
neighbourhood of z such that s|y = 0, whence s = 0 by the injectivity property.

Step 2. ¢y is surjective. Suppose we have a section t € G(U). For each x € U,
surjectivity at stalk level implies that there exists s, € F, such that ¢(s;) = t,. Let
sz be represented by a local section s(x) defined near x, say on V(z). Restricting
V(z) if necessary we may assume that ¢(s(z)) = t|y (). If y € V(z) n V(Z) then
@(s(x)) = ¢(s(¥)) near y. By injectivity proved in the first step, s(z)|v (2)~v ) =
5(Z)|v(z)~v(z)- The glueing property of sheaves entails the existence of s € F(U)
such that s|y(,) = s(x), whence ©(s)|y(y) = tly (). The injectivity property of
sheaves finally implies ¢(s) = t.

O

84. Remark. We say that a morphism of sheaves ¢ : F — G is injective if
ker ¢ = 0. Then the previous proof shows the equivalence between

(i) ¢ is injective, i.e. ker o = 0;

(ii) oy : F(U) — G(U) is injective for all open subsets U of X.
(iii) @y @ Fz — Gy is injective for all x € X.
The case of surjectivity is more subtle (we use injectivity in Step 2, see also Ex-
ercise 1. This is at the origin of the cohomology of sheaves which we consider
later.

The previous proposition is false for presheaves and highlights the local nature of
sheaves in contrast to presheaves.

85. Example. For U < C open let O(U) resp. O*(U) denote the sheaf of
holomorphic resp. invertible holomorphic functions on U. Further, let Z(U) = Z
denote the constant presheaf (U is an abritrary open set, cf. Example (iii) in 1.
Define the presheaf F(U) := O(U)/Z(U) and consider the morphism ¢ : F — O*
induced by the exponential map exp(27i). For U non simply connected oy is
not necessarily surjective. However, at the level of stalks, ¢, : F, — O will
be an isomorphism for we can always choose a representative defined on a simply
connected open neighbourhood.

86. Exercise (Surjective sheaf morphisms). Let ¢ : F — G be a morphism
of sheaves. We say that ¢ is surjective if and only if for every open set U ¢ X
and t € G(U) there exists a covering {U;} of U and elements s; € F(U;) such that
v, (8i) = tly, for alli. (You might want to think of this as a “local” surjectivity.)
Show that
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(i) ¢ is surjective < @, is surjective for all x € X.
(ii) @ is an isomorphism < ¢ is injective and surjective.
(iii) Give an example of a surjective morphism and an open set U such that oy :

F(U) - G(U) is not surjective.

Proof. (i) Consider the map ¢, : F, — G, and [U,t] € G,. Then ¢, is a surjective
group morphism < there exists an open neighbourhood W of z in U such that
W, tlw] = [W, pw(s)] for some s € F(W).

=) If [U, t] € G, is given, choose a covering of U as in the definition of surjectivity.
Let W = U, with z € U;. By assumption, there exists s = s; such that [W, ow (s)] =
[W,tlw]. Hence, @, is surjective.

<) Given t € G(U) we can find for any z € U open neighbourhoods U, of z in U,
as well as sections s, € F(U,) such that [Uy,tly,] = [Us, pu, (sz)]-

(ii) By Proposition 1 it follows that ¢ is an isomorphism if and only if ¢, is an
isomorphism, i.e. injective and surjective, for all z € X. But by the Remark 1[84]
and (i) this is equivalent to ¢ being injective and surjective.

(iii) As discussed in the previous example, the map exp : O — O* for O = the
sheaf of holomorphic functions on C, is stalkwise surjective, for exp : O(U) —
O*(U) is surjective if U is simply-connected, and every z € C admits a basis of
simply-connected neighbourhoods, i.e. any open neighbourhood of x admits an open
simply-connected subset containing x. However, exp is not surjective for general
U. O

1.3. Localisation. We now come to an important technique in commutative al-
gebra, namely localisation. Algebraically, this reduces many problems to the case
of local rings. Geometrically, it corresponds to considering functions on an open
subset or close to a given point. In a way this is an algebraic counterpart to the
topological side of regular functions via sheaves. As a motivating example we prove
that the local ring at a € X, the germ Ox 4, can be realised geometrically as follows.

87. Proposition (algebraic description of Ox ;). Let X be an affine variety.
Then

Oxa = AX)m, i= {2 | 1,9€ AX) and g ¢ ma),
where m, denotes the mazimal ideal of A(X) given by {g € A(X) | g(a) = 0}.

Proof. 1f f/g such that g(a) # 0 we can associate the germ [X\g~1(0), f/g] € Ox.
as f/g € Ox(X\g~1(0)). Since X is a variety, a regular function is determined by
any of its germes. Therefore, this map is injective. On the other hand, this map is
surjective by the definition of a regular function. O

The ring A(X)m, is called the localisation of A(X) at m,. We now study this
concept in detail.

88. Definition (ring of fractions). Let A be aring and S < A be a multiplicative
subset (recall that this means that 1 € S and a, b € S implies ab € S). On A x §
we say that two elements are equivalent,

(a,s) ~ (b,t) < there exists u € S such that u(at — bs) = 0. (2)
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The ring of fractions is
STTA=(AxS)/ ~.
If a/s denotes the equivalence class of (a, s), then the ring operations are given by
+
@b e b
st st st

w |

b
+- =
t

89. Example. Let A = k[x,y]/(y?) together with the multiplicative set
S = {a(z) + b(Z)y | a(x) + 0}. We claim that S™'A = k(Z)[y]/(y*). Indeed,
k(@) [y)/(v?) = {r(z) + s(z)y | r, s € k(z)}. Now if v/(a + by) € S7LA, then
r/(a + by) = r(a — by)/a®. Since a # 0 this is indeed an element in k(z)[y]/(y?).
Conversely, any element in k(z)[y]/(y?) can be written as an element in S~ A.

90. Exercise (ring structure on localisations).

(i) The equivalence relation of Definition 1 1s well-defined;

(ii) the operations of Definition 1 are well-defined and turn ST A into a ring;

iii) ST1A=0< 0e€ S < S contains a nilpotent element;

iv) the natural map ¢ : A — S=YA which maps a to a/1 is a ring morphism. If
©o(a) = 0, then as = 0 for some s € S. Moreover, any element in S~*A is of

the form ¢(a)p(s)™t.

(
(

Proof. (i) and (ii) are easy, if tedious, verifications, see for instance [Rel, Proposition
in 6.1]. The additive neutral element is represented by 0/s for any s € S (we may
take s = 1), and the multiplicative neutral element is 1/1.

(ili) ST!A =0« 0€ S: If 1/1 = 0/1, then there exists u € S such that u(1-1—0-1) =
u = 0, hence 0 € S. Conversely, if 0 € S, then a/s = 0/1 for all a € A, s € S (take
u = 0 in the equivalence relation .

0 € S < S contains a nilpotent element: 0 € S is obviously nilpotent. Conversely,
if s € S is nilpotent, then s™ = 0 € S, for S is multiplicative.

(iv) Tt is clear that ¢ is a ring morphism with ker¢ = {a € A | there exists u €
S such that ua = 0}. Finally, for s € S, (s) is invertible with inverse 1/s so that

a/s = (a/1) - (1/s) = ¢(a) - ¢(s) " O

91. Remark.

(i) From the view point of solving equations we can divide any equation a = b
with a, b € A by an element in s, hence a/s = b/s. Conversely, when we lift
the identity a/s = b/t in S71A to A we can merely say that there exists u € S
such that u(at — bs) = 0.

(ii) In general, » : A — S71A is not injective unless S has no zerodivisors. In
this case,

ST'A = A[S7!] = {% | s €S} < Quot A

and the map ¢ : A — S7!A is injective. The condition on the right hand
side of is designed to define an equivalence relation even if zerodivisors are
present. Furthermore, if A is integral, then so is S~!A.

(iii) Geometrically, the idea of localising consists in identifying functions which
coincide near a point or a subvariety. We come back to this point later on.
For the moment, we motivate this idea by the following example. Consider the
variety X = Z(xy) in A?; we want to localise around the point a = (1,0). We
put S ={f € A(X) | f(a) £ 0}. On X, the functions 0 and y agree near the
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point (1,0), and y/1 and 0/1 get indeed identified in S~ A, for x(1-y—0-1) =0
and x € S. Of course, this would be wrong without the Definition from .

There two popular choices for S.

92. Localising with respect to f € A. Here, we consider for f € A the
multiplicative set Sy = {1, f, f>...}. We write

Af = SJTlA
for the localised ring. We claim that

Ay = Alz]/(xf —1).

In particular, Ay = A[f~'] if f is not nilpotent (otherwise 0 € S). Indeed, let
a : Alz] — Ay the (surjective) ring morphism determined by a(a) = a/1 for
a € A and a(x) = 1/f. We need to show that keraw = (zf — 1), the reverse
inclusion being obvious. Let h(zx) € kera so that h(1/f) = 0 € A;. We first
prove that f"h € (zf — 1) for some n. Clearly, 0 = f"h(1/f) € A for n > deg f.
Hence f"h(z) = G(fz) where G = G(y) € Aly| satisfies G(1) = 0. But then
G = (y— 1)G1(y) which implies f"h(z) = (fx —1)G1(fz). Now 1 =zf — (zf — 1)
so that by the binomial theorem we get

1=1"= (2f — (zf —1))" =a"f" +p(af — 1)

for p € Alz]. Hence h(z) = 2" f"h(z) + p(zf — 1)h(z) = (2"G1(fz) + ph(z))(zf —
1)e(zf—1).

93. Example. Consider X = Z(ay) with A(X) = k[z,y]/(zy). Then A(X); =
k[Z,z1]. This follows from the discussion above and the relation zy = 0 in A(X),
so that y = 0 if Z is invertible. Geometrically, this corresponds to considering the
functions of Z(xy) on the complement of the closed set z = 0 which makes the
polynomial function z invertible.

94. Proposition. Let X < A" be an affine variety, and let f € A(X). Recall that
Dy={zxeX| f(zx)+0}. Then

O(Dy) = A(X);-
In particular, taking f = 1, we get Ox(X) = A(X).

Proof. The inclusion A(X)y; < O(Dy) is clear, so let g € O(Dy) < K(X). We
define an ideal a = {h € A(X) | gh € A(X)} in A(X) and want to show that f" € a
for some r = 0. Now for a € Dy we have g € Ox 4, 50 g = h1/ho with h; € A(X) and
ha(a) # 0. It follows that he € a, that is, there exists an element in a which does
not vanish in a. In particular, if a denotes the contraction of a with respect to the
projection A[n] — A(X), then Z(a) c Z(F'), where F € A[n] is a representative
of f e A(X). Indeed, a € Dy, i.e. f(a) # 0 implies F(a) & 0. Since there is H € a
such that h = H(a) # 0, H(x) = 0 for all H € a implies F(x) = 0. It follows that
F e /(F)cZ(Z(a)) = 4/a by the Nullstellensatz. Hence, there exists r > 0 such
that F" € a so that passing to A(X) we get " € a. O

95. Proposition. Let X be an affine variety. Then

(i) Ox(U) = Nsev Ox.a3
(i) K(X) =~ Quot A(X).
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Proof. (i) Indeed, by Proposition 1[04 we have A(X) = O(X) < (yex Oa =
ﬂma A(X)m,- Now in general, if A is an integral domain, then in its quotient
field, A = (), Am, whence the assertion. (To see this, let z € (), Am. Then
x = f/g and we need to show that ¢ is a unit. If not, then g lies in at least one
maximal ideal mgy. In particular, f/g ¢ Am,, contradiction. The inclusion > is
trivial.)

(ii) We have Quot Ox , = Quot A(X)m, = Quot A(X) for all a € X. Since every
rational function lies in at least one Ox 4, K(X) < |JQuot Ox 4 = Quot A(X). As
the quotient field of a finitely generated k-algebra, K(X) is a finite field extension
of k. O

96. Example. Consider X = Z(x1z4—79x3) € A* andlet U = (D,,uD,,)nX.
The function z1 /x5 is defined on D,, while the function x3/xz4 is defined on D,,.
We have Z1/Za, T3/T4 € Quot A(X) =~ K(X), and by definition of X, Z1/Z2 = Z3/Z4
whenever defined. In particular, this induces a regular function on U by the sheaf
property.

The second natural choice is this.

97. Localisation of A at p. Let S = A\p, where p — A is a prime ideal. Here,
the resulting ring of fractions will be written as Ay; in particular, Ay = Quot A if
A is integral. A, is called the localisation of A at p (cf. also Example 1.

98. Examples.
(i) The localisation of Z at p = (p) is

Zp) = {a/be Q[ pfb}.
(ii) The localisation of k[z] at p = (z — a) is

k2] @—a) = {f/9 € k(z) | (£ —a) t g} = O,

the local ring of a € A,ﬁ. As we have seen above, these are precisely the regular
functions defined near a € A': The zeroes of g are isolated so if (z — a) { g,
then g(a) # 0, and this remains true sufficiently close to a.

(iii) If p € Spec A[n] with corresponding affine variety X = Z(p) < A", the locali-
sation of A[n] at p consists of rational functions f/g where g # 0 on X. Since
for generic a € X, g(a) + 0, the localisation A[n], can be interpreted as the
ring of rational functions defined locally near a generic point of X. We will
elaborate further on this idea in Section [4]

(iv) If g < p, then q n (A\p) = &, so that q° = qAgp is a prime ideal of A,
by Proposition 1 Then Aq = (Ap)qe by 1 To see what this means
geometrically, consider the maximal ideal m := (x,y) in A2, Then A, consists
of all rational functions f/g with g(0,0) % 0. Now let p € Spec Ay,,. Then Z(p)
is an irreducible curve C' through the origin, and since p < m, the localisation
of An at p®is Ay = {f/g| g ¢ p} < k(x,y) — these are the rational functions
which are defined on sufficiently general points of C.

99. Remark. In our notation, Z, = {a/p" | a € Z, n € N}. Be careful to
distinguish it from the quotient ring Z/pZ which is sometimes also denoted by Z,.

100. Proposition (A, is local). Let p be a prime ideal of A. Then a/s € A,
is a unit of Ay & a ¢ p < a € Sy. Thus the nonunits of A, form the ideal
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m=p¢ = pS’p_lA, the extension of p with respect to ¢ : A — S™YA. In particular,
(Ap,m) is a local ring.
Proof. If (a/s)(b/t) = 1 there exists u € S such that u(st —ab) = 0. Since ust € S

it follows that abu = stu ¢ p, hence a ¢ p for p is an ideal. The converse is obvious
for a ¢ p implies a € S. O

101. Universal property of the ring of fractions. If S'A # 0 then o(S)
consists of units, and ¢ : A — STLA is the universal ring with this property. More
precisely, if ¥ 1 A — B is a ring morphism such that ¥ (S) consists of units then
there is a unique ring morphism 1/; : ST'A — B such that ) = 1[) o .

Proof.

Step 1. Uniqueness. If 1 : S~'A — B satisfies the condition, then ¢)(a/1) =
Yo p(a) = (a). For a = s € S it follows in particular that ¢(1/s) = ¥(s)"".
Therefore, 1(a/s) = (a)h(1/s) = p(a)y(s)~! is uniquely determined by 1.
Step 2. Eristence. Define 1)(a/s) := 1h(a) - {(s)~!. This is indeed well-defined. If
a/s = b/t, then u(at — bs) = 0 for u € S. Hence ¥ (u(at —bs) = p(u)p(at — bs) = 0.
Since ) (u) is invertible, ¥(at — bs) = ¥(a)y(t) — (b)Y (s) = 0. But then ¥ (a/s) =
P(a)p(s)™ = v()(t) ™" = ¥(b/1).

U

102. Corollary (localising again). If T < S are two multiplicative sets, let
or : A — T YA and St = or(S). Then SEIT_lA = S7LA. In particular, the
localisation of a localisation is again a localisation.

Proof. Since T < S there is a well-defined morphism ¢ : T='A4 — S=YA (a/t) =
a/t. Here, the fractions are taken in the respective rings, that is, 1 o o7 = ¢g. By
the universal property of g, : T~'A — S 'T~' A, there is a uniquely determined
Y 2 STMT'A — ST'A with ¢ o 9g, = . On the other hand, the morphism
N = Qs opr : A — S;lelA gives rise to a uniquely determined morphism
7:S7'A - S;IT1A. Now pon: A — S~'A satisfies

Pon=1ops, 0pr =10pr=ps.

By the universal property, this implies z/A) of) = Idg-14. Conversely, we have

A a A~ a o N — a a
UE 1/)(;) = 77(;) =ij(a) - 7(t)~" = rie SDST(z)
(check that multiplication/fractions are taking place in the right rings!), whence
ot =Idg-14_1, by the universal property. O
T

103. Example (localising again). Let A(A?) = k[z,y] the coordinate ring
of A? of which we think as its ring of polynomial functions. Let m = (z,y), the
maximal ideal which corresponds to the origin. The localisation A, is the stalk
of regular functions at the origin; it has one maximal ideal, namely m®. On the
other hand, every irreducible curve in A? going through the origin with prime ideal
p gives a prime ideal p¢ in A,. Indeed, p € m so that p n Sy = . Hence
(Am)pe = {f/g | g ¢ p} < k(x,y) consists of functions which are well-defined in a
neighbourhood of the origin and generically defined on the curve Z(p).
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Next we investigate ideals in S~'A. Intuitively, this should be simpler than in A,
for taking fractions creates more units.

104. Proposition (Extension and contraction of ideals for ¢ : A — S~1A4).

(i) For any ideal b of ST A we have b = b.
(ii) For any ideal a of A we have

a°“ ={a€ A|ase€ afor some s e S}
(iii) For any prime ideal p contained in A\S, p® is a prime ideal of S~LA.

Proof. (1) If b/s € b then b € b°, and so b/s € b°°. The other inclusion is trivial.

(i) If @ € a®¢, then a/1 = b/t € ST1A for some b € a, t € S (note that a ¢ a!). Hence
there exists u € S such that u(at — b) = 0, whence uta = ub € a, and so as € a for
s = ut € S. The other inclusion is again trivial.

(iii) Let (a/s) - (b/t) € p®, that is, a - b/s -t = p/q with p € p and g € S. Then there
exists u € S such that u(abg — pst) = 0. Hence ab(uq) = stup € p so that ab € p,
for ug € S which has empty intersection with p by assumption. Since p is prime,
we have either a € p, and then a/s € p¢, or b € p which implies b/t € p©. d

105. Example. For instance, consider the inclusion ¢ : Z — Q = (Z\{0})"'Z.
The only ideals in Q are (0) and Q. Obviously, Q° = Q and (0)°® = (0). On the
other hand, if a = (m) is a nontrivial ideal in Z, then a®® = Z and (0)°® as asserted
in (ii). Finally, if p = (p) is prime such that p n Z\{0} = &, then p = 0 so that
p¢ = (0) is indeed prime in Q.

106. Corollary.

(i) For an ideal a in A we have a°° = a <

asea=acaforalsels. (%)
(ii) Contraction and extension define a 1 — 1-correpondence
{ideals of A satsifying ()} < {ideals in S™'A}.
(iii) e =Aesa*=StAsan S+ J.
iv) If A is Noetherian, then so is ST'A. In particular, any localisation A, of a
p
Noetherian ring A is again Noetherian.

(v) The map ¢® : Spec S~1A — Spec A coming from the natural map ¢ : A —
S~ A identifies Spec STYA with {p € Spec A | p n S = &}.

Proof. This follows directly from the previous proposition. For instance (iv): Take
an ideal b © S71A. Then b¢ A is finitely generated by {ay,...,a,} say. It follows
that {¢(a1),...,¢(a,)} generates the extension b in S~ A. Since the latter ideal
is b, any ideal in S™!A is finitely generated. O

107. Exercise (Spectrum of Ap). Show that Spec A, is homeomorphic to U, =
{q € Spec A | q < p}. Give a geometric interpretation for A = A[n].

Proof. By Corollary 1[I06} Uy, is the image of the associated map ¢® : Spec A, —
Spec A so that Spec A, =~ U, as a set. Now U, has the subspace topology, that is,
F c U, is closed & F = U, n V(a) for some ideal a = A. We know already by
Exercisethat ® : Spec A, — Spec A is continuous. Further, ¢ has an inverse
¥ : Uy — Spec Ay given by ¥(q) = q° = qA,. Then ¢ ~1(Z(a) n Uy) = Z(aA,)
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which is closed. Hence 9 is also continuous so that ¢ defines a homeomorphism
onto its image U,.

If A = A[n], then Spec A is the set of irreducible subvarieties of A”. Hence Spec A4,
is the set of irreducible subvarieties which contain Z(p). For instance, if p = m =
(r1 —a1,...,Ty, — ay), then Spec Ay, is the set of all irreducible subvarieties of A™
passing through (a1, ...,an). O

Modules of fractions. Localisation can be generalised to modules.

108. Definition (modules of fractions and localisation). Let M be an
A-module and S — A a multiplicative subset. Then S~'M is the S~!'A-module
defined as follows. Let
(m,s) ~ (n,t) < there exists u € S such that u(tm — sn) = 0.
Then we call
STIM = (M x S)/ ~

the module of fractions. The operations

(a/s)(m/t) = am/st, m/s+n/t = (mt+ns)/st
turn S~!M into an S~!A-module. The localisation of M at p € Spec A is M, :=
(A\p)~*M. We also let M; = S;lM where S = {1, f, f2,...}. Finally, if ¢ : M —
N is an A-morphism, we define an S~! A-morphism by

S7lo:S7IM — STIN, S7lyp(m/s) = o(m)/s.

This turns S~! into a covariant functor.

In fact, the functor S~! is ezact:

109. Proposition (Exactness of S™1). IfL % M P, N is an exact sequence,

—1 -1
then so is ST'L °5% §=1M *5P S-IN. In particular, localisation of modules is
an exact functor.

Proof. Let m/s € S™*M. Then
S~18(m/s) = B(m)/s = 0 = there exists u € S such that u8(m) = B(um) = 0.

However, ker 3 = im a by exactness of the original sequence, hence S~!3(m/s) = 0
if and only there exists u € S and | € L such that um = «(l). Dividing by us yields
m/s = S~ta(l/us). O

In particular, considering the exact sequences 0 - L — M — M/L — 0 and
0—>LnL — L— M/L for submodules L, L’ ¢ M immediately implies (i) and
(ii) of the

110. Proposition. If L, L' € M are submodules, then

i) ST'Lc S™'M and STY(M/L)~S~*M/S7L.
(i) SSHLAL)=S"'LnS™ 1L c S~ IM.
iii)
iv)

STY L+ L)=S"1L+S7 L.

Let T be the image of S in A/a. Then T~1(A/a) =~ (S~1A)/a°. In particular,
Apfp° = ((A\p)/p)flA/p = Quot (A/p). In other words, the residue field of
the local ring A, equals the quotient field of A/p.

(
(
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Proof. (iii) Follows directly from the definition of +.

(iv) Viewing A and a as A-modules, the ring of fractions 7-!(A/a) is isomorphic

with S71(A/a) as modules, hence with S™'A/S~1a by (i). This is in fact a ring

morphism. Further, S™'a = aS7!A4 = a®. Note also that (A\p)/p is just (4/p)\{0}.
(]

111. Proposition. Let M be an A-module =
STIM =~ ST'A®s M

as S~'A-modules. In fact, there is a unige isomorphism ¢ : ST A4 M — S™'M
for which ¢(a/s @ m) = am/s for allae A, s€ S and me M.

Proof. We define a map S~'A x M — S~'M by sending (a/s,m) — am/s. Clearly,
this is bilinear and induces a uniquely determined surjective map ¢ as stated. It
remains to show injectivity. So let (> a;/s; ® m;) = >, a;m;/s; = 0. By passing
to a common denominator s we may write Y, a;/s;, ®m; = 1/s®>,bym; = 1/s@m
with s € S and m € M. Hence we only need to show that if m/s = 0, then
1/s®m = 0. But m/s = 0 < there exists u € S such that um = 0, hence
1/s®@m =u/us®@m = 1/us ® um = 0. O

112. Corollary. If M and N are A-modules, there exists a unique S~' A-module
morphism f : STIM ®g-14 STIN — S7H(M ®4 N) such that f(m/s @ n/t) =
(m®mn)/st. In particular, we have

Mp ®Ap Np >~ (M@A N)p

as Ap-modules.

Proof. This follows directly from the previous proposition and the standard tensor
product isomorphisms. O

Local properties. A property P of an A-module M is called local if
M has P < M, has P for all prime ideals p in A.

Here, we will consider two examples.

113. Proposition (triviality is local). Let M be an A-module. Are equivalent:
(i) M = 0;

(ii) M, =0 for all prime ideals p in A;

(ili) Mw =0 for all mazimal ideals m in A;

In particular, triviality of an A-module is a local property.

Proof. We only need to prove (iii)=>(i). Assume M # 0 and let 0 &+ = € M,
a =ann(z) = {a € A | ar = 0}. Then a is an ideal strictly contained in A
(otherwise 1 -2z = x = 0), and therefore contained in some maximal ideal m.
However, /1 € My, = 0 by assumption, that is, there exists u € A\m such that
uz = 0. But this implies u € ann(z) < m, a contradiction. O
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114. Proposition (injectivity and surjectivity are local). Let ¢ : M — N
be a morphism. Are equivalent:

(i) ¢ is injective;

(ii) ¢p : My — N, is injective for all prime ideals p in A;

(iii) @m : My — Ny is injective for all prime ideals m in A;
The same holds true for “surjective” instead of “injective”. Hence injectivity (sur-
jectivity) of a linear map is a local property.

Proof. (i)=(ii) 0 - M — N is exact, hence 0 — M, — N, is exact, i.e. ¢, is
injective.

(ii)=>(iii) Obvious.

(iii)=(i) Let L = ker¢ so that 0 - L — M % N is exact, whence 0 — L, —

My L Ny, is exact. But ¢y, is injective, hence Ly, = 0 for all m. Consequently,

L = 0 from the previous proposition, and ¢ is injective. U

Flatness is also a local property (cf. the notion of flatness in differential geometry!).

115. Exercise (flatness is local). Let M be an A-module. Are equivalent:
(i) M is a flat A-module;

(ii) M, is a flat Ap-module for all prime ideals p in A;

(iii) My is a flat Aw-module for all mazimal ideals m in A;

In particular, flatness of an A-module is a local property.

Proof. (1)=>(ii): If M is a flat A-module and A — B a ring morphism turning
B into an A-module, then Mg = M ®4 B is a flat B-module, see Exercise
Taking B = Ay, we have M ®4 A, = M, by Proposition 1[ITT} whence M, is flat.
(i) = (iii): Trivial.

(iii)=(i): Let ¢ : N — N’ be an injective A-linear map. We have to show that
Ty(p) : Ty N — Ty N' is injective, cf. Proposition Since injectivity is a
local property, ¢m : Nm — N/ is injective. By assumption, My, is flat, hence
TrPm : Nm®a, M — N ®a,, My is injective. But (Npw®a, M) = (N®AM )m
by Corollary 1[T12] Consequently, for every maximal ideal m of A the localisation
of Tppo: N®a M — N’ ®4 M is injective, hence Threp is itself injective. O

116. Exercise (Noetherness is not local). Give an example of a ring A which
is not Noetherian, though all localisations Ay at a prime ideal are Noetherian.

Proof. Consider the finite field Zy := Z/27Z and the infinite direct product A =
H§i1 Zs. A is not Noetherian for we have an ascending chain of ideals 0 ¢ Zs x 0 <
Zy x Zo x 0 c ... Next let p = A be any prime ideal. Then A, is a local integral
domain which is in fact a field. Indeed, if 0 + z € A, then z(z — 1) =2 -2 =0
for every element in A is idempotent. Hence z — 1 = 0 and thus z is a unit. It
follows that A, is Noetherian. O

117. Remark. Though Noetherness is not a local property, we still have the
following result: If A is a ring such that

(i) Am is Noetherian for each maximal ideal m of A;
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(ii) for each 0 & x € A, the set of mazimal ideals which contain z is finite.

Then A is Noetherian (cf. [AtMal Exercise 7.9]. Indeed, let a be an ideal of A and
let my,..., m, be the set of maximal ideals which contain a. Let x be a nonzero
element of a and let my,...,m,, ..., m,; s be the maximal ideals which contain z,
where m,.,; are maximal ideals which do no contain all of a so that we can find
elements z; € a with z; ¢ m;1,, ¢ = 1,...,s. Since each A, is Noetherian, the
extensions A, a are finitely generated. We let z;, xo, ..., x, be the elements which
generate Ay, a and let ag = (xq,...,2:). It follows that ap and a have the same
extension in Ay, for any maximal ideal m (they do for the ideals my,..., m, g,
and they are equal the whole ring Ay, for any other maximal ideal). If follows
from Proposition 1[TT3| that a = ag, that is, a is finitely generated. Hence A is
Noetherian.

1.4. Primary decomposition. We have now introduced the basic players of com-
mutative algebra. Next we want to discuss further aspects in connection with ge-
ometry in the spirit of the first section. The first topic we address is the so-called
primary decomposition which generalises the decomposition into primes in a UFD.
Polynomial rings such as k[z1,...,x,] are UFD (GauB} theorem), but already sim-
ple rings such as Z[v/5] are not UFD. Indeed, 2-3 = 6 = (1 ++/5)(1 — +/5) so that
there is no unique decomposition. However, there is a generalised version involving
ideals rather than elements of the ring, and which holds for a large class of rings.
A we will see that corresponds to decomposing an affine variety into irreducible
components together with further geometric information such as multiplicities or
tangency conditions (i.e. conditions on the formal derivatives of the defining poly-
nomials).

We first need some definitions. A prime ideal can be thought of as a generalisation
of a prime number p (think of Z for instance). A primary ideal is the analogue of
the power p”.

118. Definition (primary ideal). An ideal q is primary if © -y = x € q or
y" € q for some n > 0, that is, either x € q or y € /.

119. Remark. In terms of quotient rings this can be expressed as follows. q is
primary <> if every zero-divisor in A/q is nilpotent.

120. Examples.
(i) Any prime ideal is primary.
(ii) If a is primary and b < a is a further ideal, then a/b is primary in A/b as
follows from the isomorphism (A/b)/(a/b) = A/a.
(iii) The contraction of a primary ideal is primary, for if f : A — B is a ring
morphism and q ¢ B is primary, then A/q¢ can be identified with a subring
of B/q, hence any zero-divisor is nilpotent.

121. Proposition and Definition (p-primary) [AtMal 4.1 and 4.2].

(i) Let q be primary. Then p = \/q is the smallest prime ideal containing q. We
say that q is p-primary.

(ii) (Partial converse) If \/q = m is mazimal, then q is (m-)primary. In particular,
all the powers of a mazimal ideal m are m-primary.
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Proof. (i) If ¢ < p < q with p prime then /g = p so that it is enough to show that
\/q is prime. Let ab € \/q so that (ab)™ € q for some m > 0. Hence either 2™ € q
or y™" € q for some n > 0. It follows that either = € \/q or y € 4/q so that ,/q is
prime.

(ii) Let 4/a = m. The image of y/a in A/a is the nilradical of A/a which by
assumption is the image of m and therefore maximal. Since the nilradical is the
intersection of all prime ideals of A/a there is only prime ideal in A/a, namely the
image of m. In particular, A/a is local, and an element is either nilpotent or a unit.
It follows that every zerodivisor in A/a is nilpotent so that a is primary. (]

122. Examples.

(i) The primary ideals in Z are (0) and (p™) where p € Z is prime. It is clear that
they are primary. Further, v/a = (p) prime implies a = (p") for some n € N.
More generally, this is true in any principal ideal ring using also the fact that
it is UFD.

(i) Let A = k[x,y], ¢ = (x,9%). Then A/q = k[y]/(y?), hence the zerodivisors
such as the equivalence class of y, are nilpotent. In particular, it follows that
a primary ideal is not necessarily a prime power p™.

(iii) Conversely, a prime power is not necessarily primary, although its radical is
prime 1. (xiv). For instance, let A = k[x,y,2]/(zy — 2?) and let 7, § and
z denote the images of x, y and z of k[z,y, z] in A. Then p = (Z, ) is prime
for A/p =~ k[y] which is integral. Further, y = z2 € p2, but z ¢ p2. Also,
yEp= \/137 so that y™ ¢ p? for any n € N. Hence p? is not primary.

(iv) If g; is a finite number of p-primary ideals, then so is the intersection q = (1) ;.
Indeed, \/q =+/(); 9 = (/@ = b.

(v) If q is p-primary with p = (f1,..., f,) finitely generated, then p™ < q < p
for some m € N. Indeed, f/" € q for suitable n; € N since p = /q. Let
m > 2maxn;, then every monomial of degree m in fi,..., fr is a multiple of
fi** for some i, hence in Q. (Our choice of m is of course not optimal.) This

condition is not sufficient. Consider the ideal a = (22, zy) < k[x,y]. Then
va = (x). (A geometric way of seeing this is to apply the Nullstellensatz:
Va=7ZoZ(a) =Z(Z(z?) n Z(xy)) = Lo Z(x).) In particular, (z?) c a
v/a = (z). However, a is not primary, for the zero divisor ¥ is not nilpotent.
However, if p is maximal, then p” < q < p is sufficient, for taking radicals
gives \/p" C /g € /m = m, whence equality by the previous proposition.

123. Lemma. Let q be p-primary, and x € A. Then

(i) ifx ¢ q, q:x is p-primary;

(i) ifx¢p, q:2=q.
Proof. (i) q : « is primary: Let yz € q : « with y ¢ 1/(q : ). Then zyz € g, hence
zz € ¢, and finally z € q : z. Next we compute the radical: If y € q : x, then
yx € q < /q = p, hence (as = ¢ q) we have y € p. Therefore q < q : < p; taking

radicals we obtain p < 4/(q: ) < p.
(ii) follows directly from the definition. O

124. Definition (primary decomposition). Let A be a ring, and a — A be an
ideal. An ideal a is decomposable if it admits a primary decomposition, i.e.
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an expression

a=qrN...Nq

with each q; primary. This decomposition is called minimal if no term is redun-
dant (ie. a & ﬂ#j q;) and if 7 + j = /q; + ,/q;. Note that by ignoring the
redundant terms and replacing two p-primary ideals by their intersection we may
always assume that the primary decomposition of a decomposable ideal is minimal.

125.

(i)

(i)

Geometric examples.

Assume that a < A[n] is radical, i.e. a = v/a. Then by Hilbert’s Nullstellen-
satz, Corollary 1 (decomposition into irreducibles), and Remark 1

k k k
a=1(2(0) = Z(J 2(:) = () Z(Z(p:) = [ ) ps
i=1 i=1 =1

the primary decomposition is just the decomposition into irreducible subvari-
eties.

To get a feeling for the general case, consider an ideal a which is primary
to the maximal ideal m = (z,y) in k[z,y]. In particular, Z(a) = Z(v/a) =
Z(m) = (0,0) € k. What kind of geometric object X is encapsulated in a?
The idea is that X should contain Z(m) and characterise the coordinate ring
k[2]/a. If, for instance, a = (2?,y), then the residue class of a polynomial
=Y ai;z'y’ € klz,y] is [ago + ar0x]. Hence, if we “restrict” f to X we see
ago = £(0,0) and a19 = 0, f(0,0) the first derivative. So we think of X as the
point (0,0) plus the horizontal tangent vector at the origin which encodes an
infinitesimal first order neighbourhood of the origin in the z-direction. If we
add an actual neighbourhood of the origin in the z-direction, for instance by
adding the horizontal line y = 0, that is, we consider a n (y) the first-order
information becomes redundant which is reflected in the idnetity an(y) = (y).
Similarly, if we let a = (22, zy,y?), then we get in addition ag; = 9, f(0,0),
that is, X is the origin plus its whole first-order neighbourhood. If we replace
m by m”*! we see the origin plus the derivative up to order n, that is, X is
the origin plus the whole infinitesimal nth-order neighbourhood. On the other
hand, if we take p = (x) < k[z,y] which describes the y-axis {# = 0}, then
a = (22) describes the first-order neighbourhood in the z-direction of the y-
axis, that is, we get the first-order neighbourhood of the y-axis, see Figure 1[§]
(a)-(c)-

More complicated ideals can be treated similarly. For instance, let a =
(r) -m = (22,2y). Every f € a gives a polynomial function that vanishes
along {z = 0} and has multiplicity (i.e. order of vanishing) > 2 at the origin.
Conversely, any polynomial with these properties must be of the form zg
where g € m. Hence we have a primary decomposition a = (z) n (z,y)? whose
components belong to the ideals () and m, and the resulting geometric object
is the vertical line plus the thickened origin which indicates its first-order
neighbourhood, see Figure 1 (d). Note that we could decompose a equally
well as (z) n (22, y). This corresponds to the fact that the only information
about a function which is avalaible on the first-order neighbourhood of the
origin, but not on the vertical line, is the first-order information in the z-
direction.

We first address uniqueness of the decomposition which holds for a general ring.
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FIGURE 8. The varieties X (a)-(d)

126. Theorem (first uniqueness theorem) [AtMal 4.5]. Let a be a decompos-
able ideal with a = () q; a minimal primary decomposition into p;-primaries. Then
the p; which occur are precisely the prime ideals in the set {1/(a:z) |z € A}. In
particular, they are independent of the underlying minimal primary decomposition.

Proof. For any x € A we have a:z = (q; : * = [)(q; : ©), hence y/(a:x) = [\p;
by Lemma 1 If A/(a: x) is prime, then by £/(a:z) = p; for some i., so
every prime ideal associated with the primary decomposition of a is of this form.
Conversely, by minimality there exists for each ¢ an element z; ¢ gq; and such that

zi ;495 (e (Vg 95 ¢ g But then /(a: z;) = p;. O

127. Remark. Viewing A/a as an A-module, the theorem is equivalent to saying
that the p; are precisely the prime ideals which occur as radicals of annihilators of
elements of A/a.

The prime ideals p; are said to be associated with a. In particular, a is primary <
a has only one associated prime ideal. The minimal elements of the set {p1,...,pn}
are called the isolated primes while the remaining ones are called embedded.

128. Example. If a < A[n], then the minimal primes correspond to the irre-
ducible components of Z(a). The embedded primes are subvarities of these com-
ponents. For instance, in the decomposition (2%,2y) = (2) n (z,9)?, p = (x) is
minimal, while m = (z,y) is embedded.

129. Proposition (isolated primes of a decomposable a). Let a be decom-
posable. Then any prime p D a contains a minimal prime belonging to a. Hence,
the isolated prime ideals of a are precisely the minimal elements of the set of all
primes containing a.

Proof. If p > a = (q,, then p = \/p D ()4/q; = [ p;. Therefore p > p; for some i
by Proposition Now either p; is minimal or contains a minimal prime. U

Note that it is not true that the primary components are independent of the de-
composition as we have seen above in Example 1 Still, we have some kind of
uniqueness, namely the decomposition into irreducible components.
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130. Theorem (second uniqueness theorem). Let a be a decomposable ideal
with minimal primary decomposition (\;—, q; and let {p;,,...,p;,,} be a set of iso-
lated primes. Then q;; N...Nq,,, s independent of the decomposition. In particular,
the primary ideals corresponding to isolated primes are uniquely determined by a.

131. Proposition (union of the associated ideals). Let a be decomposable,
and let a = (" q; be a minimal primary decomposition with \/q; = p;. Then

Upiz{x€A|a:x=|:a}.

In particular, if the zero ideal is decomposable, the sets D of zerodivisors is the
union of all prime ideals belonging to (0).

Proof. 1f a is decomposable, then 0 = (] §;, where §; are the (primary) images of
q; in A/a. Hence we only need to prove the last statement. By Proposition |Of19| we
have D = |J,.0 /(0 : ); on the other hand, from the proof of the First Uniqueness

Theorem 1)126| we have /(0 : x) = ﬂxqfqi p; < p; for some 4, hence D < | Jp;. But
each p; is of the form 4/(0 : z) for some x € A, hence | Jp; = D. O

132. Remark. If (0) is decomposable, the set of nilpotent elements is the
intersection of all minimal primes belonging to (0).

We now turn to the existence of primary decompositions in Noetherian rings which
was the initial motivation for their study.

133. Theorem (existence of primary decompositions in Noetherian rings).
In a Noetherian ring A, every ideal a has a primary decomposition.

Proof. Say that an ideal a is irreducible if
a=bnc=a=bora=c.

For example, any prime ideal is indecomposable by [0l24] The result follows from
the next two statements.

Step 1. In a Noetherian ring A every ideal is a finite intersection of irreducible
ideals. Suppose not. Then the set of ideals ¥ < A for which the assertion is false is
not empty. In particular, there exists a maximal element a with respect to inclusion.
By definition, we can write this ideal a = b n ¢ for two ideals strictly containing a.
These are therefore irreducible so that a ¢ 3, a contradiction.

Step 2. In a Noetherian ring every irreducible ideal is primary. Let a be irre-
ducible. By passing to the quotient ring we only need to show that (0) is primary in
A/a. So let zy = 0 in A/a with y # 0. The chain of ideals ann (z) < ann (2?) = ...
becomes eventually stationary at some n, i.e. ann (2™) = ann (z"*!) = .... Then
(™) n (y) = (0). For if a € (y), then ax = 0, and if a € (2™), then a = bx™, hence
br"*t! = 0. Thus b € ann (z"*!) = ann (2") and therefore b2" = 0, that is, a = 0.
Since (0) is irreducible by assumption and (y) # (0) we must have (2™) = (0), i.e.

z e /(0).

O

Using primary decompositions we can prove some further results for Noetherian
rings.
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134. Exercise (the nilradical of a Noetherian ring. In a Noetherian ring
every ideal a contains a power of its radical. In particular, a = (0) shows that the
nilradical is nilpotent.

135. Exercise (m-primary ideals in Noetherian rings) [AtMal 7.16]. Let A
be a Noetherian ring, m a mazximal ideal, and q any ideal of A. Then the following
are equivalent:

(i) q is m-primary;

(i) q=m;

(iii)) m"™ < q € m for some n > 0.

136. Proposition [AtMal, 7.17]. Let a be a proper subideal of A. Then the prime
ideals associated with a are precisely the prime ideals which occur in the set of ideals
a:x, zeA.

Proof. By passing to A/a we may assume that a = 0. Let ()_;q; = 0 be a
minimal primary decomposition of the zero ideal into p;-primary ideals q;. Let
a; = ();4;9; ¥ 0. From the proof of Theorem 1 we have q/ann (z) = p; for
any 0 # x € a;. In particular, ann () < p;. Since q; is p;-primary, therer exists an
integer m with pj* < q; by Exercise 1[T34] It follows that a;p{"* < a; "p}* < a;Nq; =
0. Let m > 1 be the smallest integer with a;p]* =0, and let 0  x € aip;"’l. Then
p;xz = 0 so that p;  ann (x), whence ann (z) = p;.

Conversely, if ann (z) is a prime ideal p, then 4/ann () = p, whence p is a prime
ideal belonging to 0 by Theorem 1[126] O

1.5. Regular and rational maps. We now come to the definition of maps between
varieties — the morphisms of our category.

Regular maps. The first notion of morphism is this.

137. Definition (morphism between varieties). A morphism or regular
map ¢ : X — Y between varieties X and Y is a continuous map such that for
every open set V < Y, and every regular function f : V — k € Oy (V), the function

W) i=Fop:e (V) >k
is regular, i.e. in Ox(p~1(V)). Put differently, ¢ : X — Y is a morphism of
varieties < ¢ : Oy (V) — Ox(p~1(V)) is a k-algebra morphism (and in particular
a morphism of sheaves of k-algebras). It is easy to see that the composition of two
morphisms f : X — Y and g : Y — Z is again a morphism go f : X — Z so
that we get the category VAR (or VAR if we want to emphasise the field), the
category of varieties (over k).

138. Remark.

(i) Regularity is a local property, i.e. ¢ : X — Y is regular if and only if ¢|y is
regular for any open set. In particular, it is enough to verify regularity for an
open cover | J, U; of X.

(ii) Anisomorphism ¢ : X — Y is a morphism such that there exists a morphism
Y — X with poty =Idy and oy = Idx. If such an isomorphism exists,
then we say that X and Y are isomorphic. In particular, any isomorphism
is a homeomorphism (i.e. bijective and bicontinuous). Note in passing that
there are homeomorphisms which are not isomorphisms between varieties,
see Examples 1[140] and 1[T43] This allows us to consider abstract varieties
obtained by glueing together affine varieties. These abstract varieties are the
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algebraic counterpart to smooth or complex manifolds. We pursue this aspect
further in Section [d] when we will glue affine schemes.

The following lemma is useful to get explicit examples of regular maps.

139. Lemma (morphisms and coordinate functions). Let X be any variety,
Y < A™ an affine variety, and chose coordinate functions x1,...,x, on A" which
generate A[n]. A map of sets 1 : X — Y is morphism < {fz; = x;0% is a regular
function on X for each 1.

Proof. If v is a morphism, then x; o ¢ is a regular function by definition, so only
the converse needs proof. Suppose that z; o ¢ is regular. Then for any polyno-
mial f € A[n] = k[x1,...,2,], f o is also a regular function. Since the closed
sets of Y are defined by polynomials f;, their preimages under ¢ are given by
Yifi(z;) = f(¥*z;) = 0. By assumption, these functions are regular and in partic-
ular continuous. Hence the preimage is also closed and % is therefore continuous.
Finally, since regular functions are locally quotients of polynomials, ¥g = g 0 1) is
regular for any regular function g € Oy (U). Hence 9 is a morphism. O

140. Example (the cuspidal curve). Consider the map ¢ : Al — A2 o(t) =
(t2,¢%) onto the cuspidal curve Y = Z(z® — y?) < A%, By Lemma 1]139] ¢ is
regular. We can check this directly, since ¢ f(t) = f(t2,t3) is a polynomial if f is a
polynomial. More precisely, let f € Oy (V). Locally, f(Z,7) = g(Z,5)/h(Z,7) for g,
h € A[2], where Z and j are the “coordinate functions” in A(Y) = k[z,y]/(y* —2?).
Therefore, @b f(t) = g(t2,t3)/h(t?,t3) for t € U open with ¢(U) < V. Further, ¢ is
bijective and bicontinuous. Indeed, its inverse is given by ¢ : Y — Al ) (z,y) = y/x
if z + 0, and (0,0) = 0. Since ¢ takes finite sets of A! (these are the closed sets
of A modulo A! and &) to finite sets of Y, whence 1 is continuous. However, we
will see in Example 1 that its inverse cannot be regular, so that A' and Y are
homeomorphic, but not isomorphic as varieties.

>/ \/1 YZ

FIGURE 9. The curve 3% = 23

The next proposition characterises morphisms of affine varieties.
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141. Proposition. Let X be any variety and Y < A™ be an affine variety. Then
there is a natural bijective mapping of sets

Mor(X,Y) = Mor(A(Y), O(X)),

where the right hand side means morphism of k-algebras. In particular, if X < A™
is also affine, then O(X) =~ A(X) and any k-algebra homomorphism ® : A(Y) —
A(X) is of the form ©* = ® for a uniquely determined regular map ¢ : X — Y.
Hence in this case, the bijection is provided by

Proof. Given a morphism ¢ : X — Y we get by definition a map ¢ : O(Y) —
O(X). Since Y is affine, O(Y) = A(Y) by Proposition 1[94] we get the desired
k-algebra morphism A(Y) — O(X).

Conversely, let @ : A(Y) — O(X) be a k-algebra morphism. Choose coordinate
functions y1,...,Ym on A™ so that A(Y) = kly1,...,ym]/Z(Y). We define ¢, =
®(g;) € A(X) and ¢ : X — A™ by ¢(a) = (p1(a),...,pm(a)). This is a regular
map by Lemma 1[I39] We show that its image is contained in Y. Indeed, let
g € Z(Y), that is, g(41,...,9m) = 0 in A(Y). Here, we look at g as a relation
between the coordinate functions g; of Y. Since ® is a k-algebra morphism, we
have

S(g(y1,- - Im)) = 9(@(H1), - -+, 2(Um)) = 9(p15- -+, pm) =0,
hence g(¢1(a),...,om(a)) = 0 for all @ € X, i.e. p(X) < Y. In order to show

that ! = ® it is enough to see that they agree on the generators g; of A(Y). But
! (7;) = @i = ®(7;). Moreover, ¢ is uniquely determined by this condition. O

In terms of category theory, the previous proposition just says that in the case
of affine varieties X and Y, the assignement X — A(X) is full and faithful (cf.
Definition [Al9)), whence the

142. Corollary. Two affine varieties X andY are isomorphic if and only if A(X)
and A(Y) are isomorphic as k-algebras. Put differently, X and Y are isomorphic
if and only if X and Y carry the “same” global functions. In particular, this
establishes an equivalence between the category of affine varieties and the category
of finitely generated k-algebras which are integral domains.

143. Example (the cuspidal curve again). Consider again Example 1
where ¢ : X = A' > Y < A% o(t) = (t2,1%). Then A(A') = A[1] = k[t], while
A(Y) = k[z,y]/(2? —y?). Then ¢*(Z) = t? and ¢ (7) = 3 so that the image of ¢ is
the k-subalgebra of k[t] generated by t? and t3 which is proper (it does not contain
t for instance). Intuitively, the reason is that X = A! has a polynomial function
with non-zero derivative, while Y has a “singularity” at (0, 0) (see Figure 1[9)) which
squahes up the derivative of any polynomial function at 0. In this sense, Y has
fewer regular functions than X. We will discuss the issues further in Chapter

144. Proposition. Let f € A[n]. Then the basic open set Dy = A™\Z(f) is
isomorphic to the hypersurface H < A"t given by x, 1 f = 1 (see Figure 1 and

cf. also 1@),

Proof. Ifa = (ay,...,an+1) € H, then f(a1,...,a,) £ 0and ap+1 = 1/f(a1,...,a,).
Let ¢ : H — Dy be defined by ¢(a) = (a1,...,an). As a set-theoretic map, this
has an inverse ¢ : Dy — H defined by ¥(a1,...,a,) = (a1,...,an,1/f(a1,...,ay)).
By Lemma 1[139] ¢ and ¢ are morphisms. (]
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R

FIGURE 10. The coordinate ring of D¢, f = 2% — 1

145. Remark. By Proposition 1[141] we see that
A(H) = O(Dy) = klz1,...,zn)f = {g/f" | g € k[z1,...,2,], n e N}

146. Exercise (Quasi-affine varieties which are not affine). Show that the
quasi-affine variety X = A%\{(0,0)} is not affine.
Hint: Consider the inclusion ¢ : X < A? and use Proposition 1

Proof. The k-algebra morphism i* : A[2] = k[z,y] — O(X) induced by the inclu-
sion is just restriction of polynomial functions. Since by Corollary 1[67} polynomial
functions are determined by their restriction to any open set, and thus in particular
to X < A? i* is injective, and we can regard k[x,y] as a subring of O(X). Now
take a € X < A2. By Exercise 1 Ox,q = Opz 4 = k[2,y|m, < k(z,y), where m,
is the maximal ideal corresponding to a € X. It follows that O(X) < (,cx Ox,a ©
k(z,y). If f/g € O(X) with f, g € k[z,y], then for any a € X, g(a) % 0 for
I/9 € k[z,y]lm, = {h1/ha | hi € k[x,y], ha(a) # 0}. Hence Z(g) = A? is either
empty (in which case g is a unit) or contains only the origin (0,0). But then the
ideal (g) must be maximal in k[x,y] which is absurd. Hence ¢ is a unit so that
f/g € k[z,y]. Hence i* provides an isomorphism k[z,y] = O(X), which implies
that ¢ is a biregular map by Proposition 1[I41I] This is absurd, for i is not even
surjective. O

Next we dicuss regular maps for (quasi-)projective varieties. First we note that the
standard cover U; = Z,(z;) of P™ is not only open, but also affine.

147. Lemma (the open cover of P" by affine varieties). Let U; < P be the
open subset defined by the equation x; & 0. Then the mapping p; : Uy — A" is an
isomorphism of varieties (cf. Exercise 1@.

Proof. Without loss of generality we assume that ¢ = 0 and put ¢ = g and U = Uj.
We need to show that ¢ and @ = ¢! are regular. Now locally, a regular function
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fonV < A™ is the quotient of two polynomials g and h in y1, ..., ¥y, which under
©* gets mapped to

G f = G g/f) = g(a1/zo, ..., xn/z0)/Mx1/T0, - .., T0/T0) = 2" TEIB(g)/B(R)

which is the quotient of two homogeneous polynomials of degree deg h. Conversely,
the action of 1 corresponds to the action of o on the denominator and numerator.
d

148. Example. For P! we have the two maps ¢ : Uy — A, p[zo : 21] = 21/20¢
and ¢ : Uy — A, p[zg : 21] = wo/x1. Note that if we define a biregular map
fik* > kE* by f(x) = 1/z, then f oo = ¢1. Put differently, we have glued the
two affine open sets Uy and Uy by the biregular map f.

Lemma 1[T47]is a special case of the following general fact.

149. Corollary (base for the Zariski topology). On any variety there exists
a base for the topology consisting of open affine subsets. In particular, any point
admits an affine neighbourhood.

Proof. We must show that for any a € X, and any open set U containing a, there
exsists an affine set V in U which contains a. Since U is a variety, we may as well
assume that X = U. Further, any variety is covered by quasi-affine varieties, we
may assume that X < A" is quasi-affine. Consider then Y = X\ X which is closed in
A™ andlet a = Z(Y). Then Z(a) = Y by Proposition 180 that we can find f € a
with f(a) 0. Let H = Z(f) c A™. Sincea¢ H,aeV:=X\(XnH) =X n HC,
which is an open subset of X. On the other hand, X\(X n H) = X n Dy is a closed
subset of Dy = A™\H, hence equal to it. By the previous proposition, Dy is affine,
hence V is the desired open affine subset. O

As an application, we prove the following

150. Lemma. If X < P" is a quasi-projective variety, and fo,..., fm € S[n]
are homogeneous polynomials of same degree in the homogeneous coordinates on P™
without any common zero, then

[ X =P peXw—([fop): . : fmp)]

defines a morphism.

Proof. The assumptions on the f; imply that f is well-defined set-theoretically as
well as continuous. To verify that f defines a morphism we can work locally on the
open set V; = f~1(U;) = {pe X | fi(p) # 0}, where U; is the standard affine cover
of P™. In the coordinates provided by U;, flv, = (f;/fi)j+i, so f is a morphism
since its components are regular being locally quotients of polynomials. 0

151. Corollary (Segre embedding). Let PN = Pr+D0m+D=1 pe projective
space with homogeneous coordinates z;;, 0 < i < n, 0 < j < m. if xo,...,%n,
Yos - - -, Ym are homogeneous coordinates on P™ resp. P™, consider the map ¢ :
P x P™ — PV given by ¢([z;], [y;]) = [2i;] = [ziy;]. Then ¢ defines a bijection
onto the image %y, m = (P x P™) which is a projective variety in PN with ideal
generated by zijzi — zuzk; for all0 < i,k <n and 0 < 5,1 < m. The map ¢ is
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called the Segre embedding. It gives P" x P™ the structure of a projective variety
by identifying the product with %, ,, < PV.

Proof. The inclusion ¢(P™ x P™) c %,,,, is obvious. Conversely, let a = [a;;] €
Ypm C PN so that aijor, — aigaj; = 0. At least one a;; # 0; without loss of
generality, agp # 0 so that a € Uy. We pass to affine coordinates by setting agg = 1,
hence a corresponds to the point (az‘j)(i,j)4=(o,0) e AN. But aij; = Q;;G00 = Q000;
for a € X, hence a;; = z;y; and a = ¢([zo : ... : zn],[yo : ... ¢ ym]). To
show injectivity let a = f(z,y) € X be a point with agp = 1. Hence zq, yo *+ 0.
We can scale the homogeneous coordinates of z and y such that xo = yo = 1.
Then x; = z; and y; = zp;, hence ¢ is injective. It is clear that ¢ is regular
by Lemma 1 Computing the inverse in affine coordinates shows that ¢! is
locally a polynomial map, hence also regular. To show that X is irreducible, let
Gn : Xpm — P and gy, : Xpm — P be defined on Uy, the set of points where
zij 0, by ¢n([2i5]) = [#i5]7o and Qm([zij]?:@ We obtain a commutative diagramm

pr 3)

P

@
P x P —— %, m

qm
Tm

IP)m
where 7; denotes the natural projection. Restricting the Segre embedding to P™ x
{[y]} and {[z]} x P induces isomorphisms between P™ and P™ and subspaces of
PV whose fibres are irreducible. We can now imitate the proof of irreducibility for
the product of two affine varieties from Example 1]29] O

152. Remark. As for affine varieties, the topology on P™ x P™ is not the product
topology. In fact, the closed sets of P x P™ with its induced structure as projec-
tive variety via the Segre embedding are given by the zero loci of bihomogeneous
polynomials in k[z1,...,Zn, Y1, -, Ym], that is, polynomials which are separately
homogeneous in the z; and y;. Indeed, the zero locus of bihomogenous polynomials
can be written as the zero locus of bihomogeneous polynomials of the same degree
in the x; and y; (cf. Remark 1 (ii)) and are thus polynomials in the z;;, that is,
the zero locus defines a closed subset for the topology induced by PV. Conversely,
if a subset of X, ,, = P™ x P is given as the zero locus of polynomials in the z;;,
substituting z;; = x;y; yields a bihomogeneous polynomial. In particular, if X and
Y are projective varieties sitting inside P™ and P respectively then X xY c ¥, ,,,
is again projective for it is closed while irreducibility follows as in the affine case,
cf. Proposition 129

153. Example. Consider the case n = m = 1. Then £ = (P! x P!) < P3 is
the quadric surface given by Z (209211 —210201)- Explicitly, we have the isomorphism
P! xP' = %11, ([zo: 1], [yo : v1]) = [zoyo : zoyr : w130 : 2191] € X,

In particular, the families of projective lines P! x {a} and {b} x P! get mapped to
the families of lines L, and M, in P3, see Figure 1 below.

154. Exercise (products of quasi-projective varieties). We consider P x P™
as a projective variety via the Segre embedding. If X < P™ and Y < P™ are two
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QcP

[]
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d
S
-

FIGURE 11. The Segre embedding of P! x P! and the two families of lines

quasi-projective varieties, consider the (set theoretic) product X x Y < P™ x P™.
Show that X XY 1is a quasi-projective variety.

Proof. If X and Y are quasi-projective, then X = U nW and Y =V n Z for U
and V open and W and Z closed in P™ and P™ respectively. But (X xY) =
4, (X) n g (Y) (cf.(B)) so that the image is an open set of a closed subset. That
the image is irreducible follows as in the affine case, cf. Proposition 1[29] O

Lemma 1[T47) can be also used to describe the stalk of regular functions of P™. As
in the case of affine varieties, the stalk can be described in terms of localisation.
First, however, we need to discuss how to put a grading on these localised rings.

155. Localisation of graded rings. Let S = ;-S4 be a graded ring, and let
T < S be a multiplicatively closed system of homogeneous elements. To give the
ring of fractions T-1S the structure, we say that f/g is homogeneous if f € S
is homogeneous and put deg(f/g) := deg f — degg. If this is well-defined, then
we have a decomposition T-15 = @aso(T ~18)4 which gives indeed a grading.
Now if f/g = f'/q¢’, then there exists h € T such that h(fg' — f'g) = 0, hence
degh + deg f + deg g’ = deg h + deg f’ — deg g so that deg is well-defined on T~18S.
We then put

Sery == {f/ge TS| f/g is homogeneous of degree 0}.

The notation is slightly ambigous but standard in the literature. The most impor-
tant examples are these:
(i) If p = S is a homogeneous prime ideal we let T, = (Jo{f € Sa | f ¢ p} and
write S(,) for S(g,). This is a local ring with maximal ideal (pT, 'S) N S(p).
In particular, if S is an integral domain, then for p = (0) we obtain the field
S((0))-
(ii) If f € Sy, then Ty = {f* | k > 0} is a multiplicative subset of homogeneous
elements. We let Sy) := S(7,) be the subring of elements of degree 0 in the
localised ring S¢.

156. Proposition (regular functions on P"). Let X < P be a projective
variety with homogeneous coordinate ring S(X). Then
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(i) for anyae X, let m, < S(X) be the ideal generated by the set of homogeneous
f € S(X) such that f(a) = 0. Then Ox o = S(X)(m,);
(ii) K(X) = S(X)(0)):

Proof. We start with the following

157. Lemma. If X < P" s a projective variety, and ¢ : U; — A" a standard
chart, then A(p(X;)) = S(X)(z,) where X; = X nU;. Put differently, the regular
functions on the (affine) variety X; are the degree 0 functions in the localised ring
S(X)a,;-

Proof. Indeed, let i = 0, v; = ¢ and U; = U for convenience, and write A(X;)
for A((X;)). Then @ff = f(x1/x0,...,20/20) € E[zo0,. .. s Tn](z,)- Clearly, o is
an isomorphism between A[n] and k[zo,...,2n](,)- A polynomial f € A[n] of
degree d gets mapped to 8(f)/zd. Tt follows that under this isomorphism, Z(X)
is mapped to the ideal generated by F/:cgegF for F' € Z(X) homogeneous. Hence
AX)/Z(X) = k[xo, - ., Tp](z0)/{F /2l | F € Z(X)a}). It is easy to see that the lat-
ter ring is isomorphic to S(X)z,) by sending [f/25% ] € k[xo, . .., T (o) [{F /2 |
FeZ(X)a}) to f/z5%7 where = denotes the equivalence class in S(X). O

Note that X; = X so that by Exercise Z(X) is the ideal generated by 8(Z(X;)).

(i) If @ € X choose i such that ¢ € X;. In particular, x;(a) + 0. Without loss
of generality we assume again ¢ = 0. The associated maximal ideal m/, < A(Xj)
consists of functions f € A(Xp) such that f(a) = 0. Under the isomorphism
A(Xo) = S(X)(z,) this gets mapped to the maximal ideal m,. Therefore, Ox , =
A(Xo)m, = (S(X)(z4))m,- Since x¢ is a unit, Corollary gives the result.

(if) K(X) is isomorphic to K(X;) = Quot A(X;). Via wg, the latter is isomorphic
to S(X)((O)). 1

Rational maps and blow-ups. As we have seen in Section A[n], has the
interpretation of functions which are generically defined on X = Z(p). We also
introduced the function field K(X) of rational functions in Section Next we
generalise this notion to rational maps and define a further category of varieties.

158. Lemma (Identity property of morphisms). Let ¢ and ¢ be two mor-
phisms between varieties X — Y, and suppose there is a nonempty open subset
U c X such that o|y = ¥|y. Then ¢ = 1.

Proof. We may assume that Y < P” for some n. By composing with this inclusion
we may assume that ¥ = P"”. The morphisms ¢ and v : X — P" determine
a morphism ¢ x ¢ : X — P™ x P™ with projective target by 1[I51]] Let A =
{(p,p) | p € P} < P* x P be the diagonal of P* x P". If [zg : ... : x,] and
[yo : ... : yn] denote the homogeneous coordinates on the left resp. right hand
side factor, A = Z({x;y; —x;y; | 4,7 = 0,1,...,n}), so A is a closed subset. By
assumption, ¢ x ¥(U) < A. But U is dense in X, i.e. U = X, and A is closed in
P™ x P, whence ¢ x ¥(X) < ¢ x (U) < A. Hence ¢ = 1. d
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We are now prepared for the

159. Definition (rational map). Let X, Y be varieties. A rational map
® : X --» Y is an equivalence class of pairs [U, ¢], where U is a nonempty open
subset of X and ¢ : U — Y a morphism, and where [U,¢] = [V, 4] if ¢ and @
agree on U n V. By Corollary 1[I5§] this actually defines an equivalence relation.
The rational map @ is called dominant, if for some, hence for every pair [U, @]
representing ®, the image ¢(U) is dense in Y (use again that f(U) < f(U) for f
continuous).

160. Remark. Despite appearance, a rational map is not a map from X — Y
which is what we indicate by an dotted arrow; it is only densely defined on X.
The identity property 1[I58 shows that the underlying equivalence relation is well-
defined. Indeed, if [U,¢] = [V, 9] so that ¢lu~v = Y|u~v, and [V 9] = [W,n],
whence Y|w~v = n|lwnv, it follows that ¢lu~v~w = nlv~vaw, hence ¢lyw =
Nuaw for UnV A W is dense in U n W. However, we cannot compose rational
maps in general which is why we also consider dominant maps: The composition
of two dominant maps is indeed well-defined and again dominant: If & : X --» YV
and ¥ : Y --» Z are rational maps represented by [U, ¢] and [V, 1] respectively,
we define Wo @ : X ——» Z by [U n ¢~ 1(V),9 o ¢] provided ¢—(V) is not empty.
If it were empty, then ¢(X) < Y\V, hence ¢(X) = V¢ =Y, whence V = ¢, a
contradiction. To understand this condition from a more algebraic point of view,
we note that a rational map ® : X --» Y = [U, ¢] induces a map

O A(Y) - K(X), [ ®f =[U fod)].
Then we have ®(f) = 0 < ¢(U) = Z(f), whence ® is injective < ® is dominant.
We can then extend ®! to a morphism
O K(Y) - K(X), Y[V, f]=[Un¢ (V) fog]

which is well-defined in view of the dominance of ®. In particular, if U :Y --» Z,
then (0o ®): A(Z) — K(X) can be computed via

(o ®)if = (U, fotpg] = [Un g™ (V), forpod] = B[V, fou] = DUV, f]
which shows that ¥ o ® is dominant if ¥ and ® are dominant and that (¥ o @)% =
®f o WP : K(Z) — K(X). We therefore can define the category of varieties and
dominant rational maps RAT.

In analogy with Proposition 1 which asserted that k-algebra morphism A(Y) —
A(X) are of the form ¢ for a regular map ¢ : X — Y we can prove the

161. Proposition. If X and Y are affine varieties, any k-algebra morphism
f: K(Y) — K(X) is of the form f = ® for a unique dominant rational map
P:X--»Y.

Proof. Construction and uniqueness are precisely as in 1J141l Furthermore, ®f is
necessarily injective since it it nontrivial, hence ® is injective by Remark 1
Hence ® is dominant. U

Recall that a field extension k ¢ K is finitely generated if K is a finite extension of
k(z1,...,z,) for algebraically independent elements «; € K (cf. also Appendix .
Equivalently, K = k(aq,...,as) for a; € K, that is, K coincides with the smallest
subfield of K which contains k£ and the «;.
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162. Corollary (equivalence of RAT with the category of finitely gen-
erated field extensions). For any two varieties X and Y we have a bijection
between

(i) the set of dominant rational maps X --+Y;

(ii) the set of k-algebra homomorphisms K(Y) — K(X).
This correspondence gives a contravariant equivalence of the categories RAT and
finitely generated field extensions k < K.

Proof.

Step 1. Construction of the bijection. Let [U,¢] = ¢ : X --» Y be a dominant
rational map, and let [V, f] € K(Y) be a rational function. Since ¢(U) is dense
in Y, ¢~(V) is a nonempty open subset of X, whence p'f := f o is a regular
function on ¢ ~1(U), and thus defines a rational function [¢~}(U), f] € K(X). One
easily checks that ¢ : K(Y) — K(X) is a k-algebra homomorphism.

Step 2. Construction of the inverse. Let 6 : K(Y) — K(X) be a homomorphism of
k-algebras. We define a rational map ¢ : X --» Y as follows. By Proposition 1[149]
Y is covered by affine varieties. Since rational maps are only densely defined anyway,
we may assume that Y is affine. Let yy,. .., y, be generators of the k-algebra A(Y).
Then 6(y1),...,0(y,) are rational functions on X. Taking the intersection of the
domains of the representatives we can find an open set U in X such that 6(y;)
are regular on U. In particular, we get an injective morphism A(Y) — Ox(U).
By Proposition this corresponds to a morphism U — Y giving a dominant
rational map X --+ Y which is an inverse to the map constructed in the first step.

Step 3. Finally, we need to show that for any variety X, K(X) is finitely gener-
ated over k, and conversely, if £ < K is a finitely generated field extension, then
K = K(X) for some variety X. Since K(U) = K(X) for any open subset U
of X, we may assume that X is affine. But then Proposition 1[95] implies that
K(X) = Quot A(X). Since A(X) = k[ay,...,a,] we have K(X) = k(ay,..., ),
that is, K(X) is finitely generated. On the other hand, if ¥ ¢ K is any finitely
generated field extension, let K = k(ay,...,a.). Then A = Eklas,...,a,] is a
finitely generated k-algebra without any zerodivisors, hence A = A(X) for some
affine variety X. It follows that K = K(X).

O

163. Corollary and Definition (birational maps). An isomorphism in this
category is called a birational map. This is a rational map ® : X --» Y which
admits an inverse ¥ : Y --» X such that W o ® = Idx and ® o ¥ = Idy as rational
maps. If there is a birational map between X and Y we call X and Y birationally
equivalent or simply birational.

164. Corollary. For any two varieties X and Y, the following are equivalent:

(i) X andY are birationally equivalent;
(ii) there are open subsets U < X and U 'Y with U isomorphic to V;
(iii) K(X) =~ K(Y) as k-algebras.

Proof. (i) = (ii) Let ® : X --» Y and ¥ : Y --» X be rational maps which are
inverse to each other and which are represented by [U, ¢] and [V, 4] respectively.
Then ¥ o @ is represented by [¢~1(V), % o ¢] and since ¥ o & = Idy as rational
maps, 9 o ¢ is the identity on ¢~1(V). Similarly, ¢ o4 is the identity on ~1(U)
so that o= (yp~1(U)) and ¢~ (p~1(V)) are isomorphic open sets of X and Y.
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(ii) = (iii) follows from the definition of function fields.

(iii) = (i) follows from the previous theorem. O

165. Exercise. Let X and Y be two varieties. Suppose there are points p € X
and g € Y such that the local rings Ox , and Oy,q are isomorphic as k-algebras.
Then there exist open neighbourhoods U and V' of p and q respectively as well as a
bireqular map which identifies U and V and takes p to q.

Proof. Since any point of a variety admits an affine neighbourhood, and the stalks of
regular functions are determined by restriction to any open neighbourhood, we may
assume that X and Y are affine. Furthermore, by embedding A™ — A" we may
assume that X, Y < A™ are affine. Let x1,...,x, be coordinate functions on A"
which define regular functions on X by restriction and thus elements in Ox ;, which
we still denote by x;. If we have a k-algebra isomorphism 0 : Ox , = Oy, then
0(x;) define rational functions on Y which are regularon V; ¢ Y. Let U = (| V;n X.
This is an open subset of X on which we can define the map

g:U—Y, @a):=(0(x1)(a),....00wn)(a)).
By Lemma... this is a regular map. Similarly, we can define a regular map
V=X, dla)i= (07 @), ...,07 (za)),

where #71(x;) is regular on U; and V = (\U; n'Y. Whenever defined, ¢ and ¢
are inverse to each other. Finally, let U = U n ¢~ (V) and V = V n ¢~ (U) and
v =@lvand ¢ = 1/~J|V Then @o) and 1o are clearly defined and give the identity
on U and Y. For instance, let a € U. Then y = o(a) = ¢(a) € VA @(U). It remains
to show that y € =1 (U) which entails ¢(a) =y € V. But ¢(y) = ¥ (@(a)) € U by
design. Note that ¥ (5(a)) is defined since @(a) € V. Finally, if 7 : A" — A" is the
translation 7(a) = a — ¢(p) + ¢, the maps ¢ := 70 : U :=U n ¢~ (U) - V :=
VA Y (V) and ¢ :=por!: V — U are inverse to each other with ¢(p) = ¢. O

Therefore, despite being “local rings”, the stalk of regular functions determines the
birational type of the variety. From this point of view, a local ring still contains
a lot of global information though birationality is a much weaker concept than
biregularity, as the following result shows.

166. Proposition. Any variety X is birational to a hypersurface Y < P™.

Proof. (The proof requires some material from Appendix ) The function field
K(X) is a finitely generated extension field of k. By Proposition K is separa-
bly generated over k, that is, there exists a transcendence base x1, . .., z, such that
k(z1,...,2z,) € K is a finite separable extension of k. Hence, by the Theorem of the
Primitive Element K = k(z1,...,2n, ). Since « is algebraic over k(z1, ..., z,)
it satisfies a polynomial relation with coefficents given by rational functions in the

z;. Clearing denominators gives an irreducible polynomial f(zi,...,2,,a) = 0
which defines a hypersurface in A"*!1. Tts coordinate ring is A[n + 1]/(f) so that
its quotient ring is K (X). The result follows from Corollary 1 O

167. Remark. Once we have a properly defined notion of dimension, we will see
that the proof implies that n — 1 equals the dimension of X.
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As a concrete example of a birational map we discuss the notion of blow up of
a variety at a point. This is a fundamental construction and a main tool in the
resolution of singularities of an algebraic variety (cf. Hironaka’s theorem which
unfortunately — despite its importance — is far beyond the scope of this course).

First we construct the blow up of A™ at the origin 0. Consider the product A™ x
P"~! which is a quasi-projective variety (thinking of A" as being embedded into
P™), cf. Exercise 1 If z1,...,x, are affine coordinates on A™ and yi,...,¥n
homogeneous coordinates of P*~1 (observe the index shift: we start with 1 instead
of 0), then the closed sets of A™ x P"~! are given by polynomials in the z;, y; which
are homogeneous in the y;.

168. Definition. We define the blow up of A™ at the origin 0 to be the closed
subset X of A" x P"~! defined by the equations {z;y; = zjy; | i, j =1,...,n}.

We have a natural morphism ¢ : X — A™ by restriction of the projection onto
the first factor. Regularity follows directly from Lemma 1 Here are some
properties of this map.

169. Proposition (fibres of ¢ : X — A™).

(i) Ifa € A", a % 0, then = 1(a) consists of a single point. In fact, ¢ induces
an isomorphism of X\¢~1(0) and A™\{0}. In particular, we get a birational
isomorphism X --» A™ (p is of course defined on X, but its inverse is only
densely defined and therefore gives only rise to an inverse in the category
RAT).

(ii) E := ¢ 1(0) = P""1, the so-called exceptional divisor. In fact, we can
think of the points of ¢~ 1(0) as the set of lines through 0 in A™.

Proof. (i) Let a = (a1,...,a,) € A™ with some a; £ 0. Now if (a,[y1 : ... :yn]) €
¢ *(a)), then for each j, y; = (aj/a;)yi, so [y1 : ... yn] = [a1 : ... : @] is
uniquely determined as a point in P*~!. Moreover, the map ¢ : A"\{0} — X,
P(a) = ((a1,...,an), (a1,...,a,)) defines the inverse morphism.

(i) Clearly, (0,[y1 : ... :yn]) € X for any [y; : ... : yn] € P*~L. Geometrically, we
can identify the points in ¢ ~1(0) with lines [ in A™ through the origin as follows. If
a=(ay,...,a,) € 1\{0} (whose choice obviously determines [), a parametrisation of
l is given by ;(t) = a;t, t € Al. Its preimage [ under ¢ has then the parametrisation
xi = ait, yi = a;t, t € AN\{0}. Since [a1t : ... : ant] = [a1 : ... : a,] We can
parametrise l by x; = a;t and y; = a; which also makes sense in ¢t = 0 and gives
the closure of [ in X. But [ meets P! =~ ¢~1(0) precisely in [a; : ... : ay].
Hence sending the point [a1 : ... : a,] € ¢71(0) to the line determined by 0 and
a=(ay,...,a,) sets up a 1 — l-correspondence. O

170. Corollary (irreducibility of the blow up). X is irreducible.

Proof. Indeed, X is the union of X\¢~1(0) and ¢~1(0). The first set is isomor-
phic to A"~1\{0} which is irreducible as an open subset of an affine variety. On
the other hand, we have seen that every point ¢~1(0) is in the closure of some
line in X\p~1(0). Hence X\¢~1(0) is dense in X so that X is irreducible itself
(alternatively, argue by Exercise 1. O
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171. Definition (blow up a subvariety). If Y is a closed subvariety of A"
passing through the origin, we define the blow up of Y at 0 to be

Y = o L(Y\{0}),
where ¢ : X — A" is the blow up of A" at the point 0 described above. We keep

on denoting by ¢ the restriction of this map to Y. To blow up at any other point
a € Y we make a linear change of coordinates sending a to 0.

172. Remark.

(i) ¢ induces a birational morphism of ¥ to Y.

(ii) Although the definition seems to depend on the embedding of Y into A™ (that
is, two isomorphic subvarieties might not have the same blow up), one can
actually give an intrinsic definition of the blow-up. It is therefore independent
of the actual representative of the isomorphism class of subvarieties.

173. Example.

(i) Consider the line L = Z(Ax — py) in A2 We assume that X\, g #+ 0 so
that A\/u is the slope of L. What is the blow up of L at the origin? If
we choose the parametrisation (ut, At), then for ¢ =1(L\{0}) = {(ut, \t), [u :
Al | t & 0}. Therefore, the total inverse image of L under ¢ consists of two
irreducible curves: The exceptional divisor (here: the “exceptional curve”)
E = {(0,0),[u : v]} and the irreducible curve L = {(ut, \t), [ : \] | t € k},
the blow up of L, which meets the exceptional curve in [u : A], the point
corresponding to the line L itself.

(ii) Let Y be the plane cubic curve given by the equation y? = z2(x + 1) in A2
We compute the blow up of Y at 0. The blow up X = A2 of A2 at the origin
is defined by the equation xu = yt in A% x P! where [t : u] are homogeneous
coordinates on P!. The inverse image of Y under ¢ is given by the equations
y? = 2%(x + 1) and 2u = ty in A2 x P!. Now P! is covered by the two open
setst + 0 and s 0. If t + 0 we can set t = 1 and get the equations

v =2z +1), y==zu

in A% with coordinates z, y and u. Substituting yields z?u? — z2?(x + 1) = 0.

Hence we get two irreducible components given by x = y = 0, u arbitrary,

which belongs to the exceptional divisor E, and v? = = + 1, y = zu, which

belongs to Y. Further, Y intersects F in [1 : +1], see Figure 1 The

solutions u = +1 correspond to the different slopes of the two branches of Y

in A? at the origin; the blow up has thus the property of pulling apart lines

of different slope.

174. Exercise. Let Y be the cuspidal curve Z(y? — 2%) < A2 which we blow up
at the origin. Show that the exceptional curve E and the blow up Y meet in one
point, and that Y >~ A,

Remark: In particular, the morphism ¢ : Y — Y is a homeomorphism, but not
biregular.

Proof. We parametrise the cuspidal curve by (£2, %) so that the equation for Y are
t2v = t3u. Tt follows that =" (Y\{0}) = {(t3,#%),[1 : t]} so that Y intersects F in
the point [1 : 0]. The rational function {(z,y), [u : v]} — v/u yields a well-defined
regular function when restricted to Y which gives the desired isomorphism. U
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F1GURE 12. The blow up of the plane and the strict transform of a curve.

2. INTEGRAL RING EXTENSIONS AND THE NULLSTELLENSATZ

We now come to the proof of the Nullstellensatz. In its so-called weak form it
asserts that

if k € K is a field extension such that K is of finite type, i.e. finitely generated as
a k-algebra, then k c K is a finite field extension.

2.1. Integral ring extensions.

If we have a field extension k¥ < K, and a € K is algebraic over k, then the
extension field k(a) is a finite dimensional vector space over k. Indeed, there exists
a polynomial f € k[z] such that f(a) = Y. c;a’ = 0 since a is algebraic. By dividing
by the leading coefficient of f we get the relation a™ = 22:01 cia'/c,. Similarly, if
A < B are rings we call B an extension ring of A and say that A — B is a ring
extension. However, if f(b) = 0 for b e B and f € A[x], Ala] is in general not a
finite-dimensional module as the easy example Z[1/2] shows. Still, for rings there
is a useful analogue of algebraic field extensions which will occupy us next.

Basic properties. We start with the

1. Definition (integral and finite ring extensions). Let A — B be a ring
extension.

(i) We call b € B integral over A if there is a monic polynomial f € A[x] such
that f(b) = 0. If every b € B is integral over A, then A c B is an integral
extension.

(ii) The ring extension is finite if this turns B into a finitely generated A-module.

2. Remark. If A and B are fields, then integral and finite ring extensions coincide
with algebraic and finite field extensions.

3. Algebraic examples.
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(i) If A is an integral domain we have the natural ring extension A < k = Quot A.
In particular, if A is a UFD, then z € k is integral over A < = € A (see
Exercise .

(ii) Z < Z[1/2], the subring of Q generated by Z and 1/2, is not integral. Indeed,
assume that © = p/q € Z[1/2] with p € Z and 0 + ¢ € 2Z coprime. If we had
a polynomial relation

(g)" n c,H(g)"—l Y de =0,

then multiplying with ¢ shows that p” = —q(c,_1p" ' +...+cog" 1), hence
q divides p, a contradiction.

(iii) 7 = (1 ++/5)/2 (the “golden ratio”) is integral for Z < Z[7], where Z[7] is
the subring in Q generated by Z and 7. Indeed, 72 — 7 —1 = 0. On the other
hand, o = (1 ++/3)/2 is not integral for Z < Z[o] for Z[1/2] < Z[c]. Indeed,
2(0% — 1) = /3 € Z[o] so that (62 —1)v/3 — 1 =1/2 € Z[1/2]. But 1/2 is not
integral over Z.

4. Geometric examples. As we will see at the end of this Section [2] a ring
extension between finitely generated, reduced k-algebras can be thought of as a
morphism of varieties. To get a geometrical feeling, let A = k[z] and B = A[y]/(f),
where f € A[y] is a nonconstant polynomial which we think of as a nontrivial
relation on y. Geometrically, A corresponds to X = Al while B is the coordinate
ring of Y = Z(f) < A? the curve defined by f. We assume that we get an injection
t: A — B, x — I giving a ring extension. This corresponds to a morphism
m:Y — X given by (z,y) — x.

(i) Consider first the case f(y) = y? — 2% so that y € B (strictly speaking 3 € B)
is integral over A. We will see in the next proposition that this implies that
A c B is integral. Since any nonzero value for x yields a quadratic relation on
y, the fibre 7=!(z) consists of two points unless = 0 where the fibre consists
of one point.

(ii) Next consider f(y) = zy — 1. Lifting the monic relation to k[2] we see that
there exists a monic polynomial g € A/(f)[z], the image of g € k[x][z] such
that g(g) = 0 if and only if there exists h € k[x][z] such that g(y) = h(y)(zy—
1). Considering the leading term in y shows that this cannot happen, hence
7 is not integral. Here, the fibre over = consists of one point if x £+ 0 and is
empty, if z = 0.

(iii) Finally, consider f(y) = zy. The same argument as in (ii) shows that y is not
integral. The fibre over = # 0 consists again of one element, while in z = 0 it
is infinite.

Therefore, as a first approximation, we think an integral ring extension as a surjec-

tive variety morphism with finite fibres (“ramified coverings”), see also Figure 2

5. Proposition (finite versus integral extensions). Let A ¢ B be a ring
extension, and let b€ B. Then are equivalent:

(i) b is integral over A;

(ii) the subring A[b] generated by A and b is finite over A;

(iii) there exists a subring C < B such that A[b] < C' and C is finite over A.

In particular, a finite ring extension is integral. In fact, any finite ring extension
A c B is of the form B = A[by,...,b,]| with b; integral over A, i.e.

finite type + integral < finite
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X -+

£« vy X g A=xy

FIGURE 13. The covering maps from ring extensions.
Proof. (i) = (ii) If b satisfies a monic relation of the form "™ = — Z?z_ol a;b® with
a; € A, then A[b] is generated by 1,b,...,b" 1.
(ii) = (iii) Take C' = A.
(iii) = (i) Consider b as a map up : C — C, ¢ — b-c. Since C is a finite A-
module the Cayley-Hamilton theorem [0]56] applies, and p;, satisfies a monic relation
HE +an—1py '+ ...+ ag = 0in End(M) with a; € A. Evaluating at 1 gives (i). O

6. Corollary. Let X < P} be a projective variety. Then O(X) = k.

Proof. Let f € Ox(X) be a global regular function. Restriction induces an injection
Ox(X) — A(X;) = S(X)(4,)- In particular, f = gi/xd for g; € S(X) homogeneous
of degree d;. We have the inclusions O(X) ¢ O, € K(X) < [ ecx Oa so that by
(i), O(X), K(X) and S(X) can be considered as subrings of L = Quot S(X). In
particular, xfi f € S(X)q,, the degree d; polynomials of S(X). Next choose d >
> d;. As a k-vector space, S(X)4 is spanned by monomials of degree d in Zy, . . . , T,.
In any such monomial, at least one x; occurs to a power > d; by the choice of d.
Since for such an i, z&° ... 2% ... xtr f = 280 ... af % atrg; € S(X)q we have
S(X)a-f < S(X)q. Iterating we get S(X)q-f9 < S(X)q for all ¢ > 0. In particular,
xdf? e S(X) for all ¢ > 0 which shows that the subring S(X)[f] of L is contained
in 2545(X), a finitely generated S(X)-module. Since S(X) is Noetherian, S(X)[f]
is also a finitely generated S(X)-module by Corollary Therefore, f must be
integral over S(X), i.e. satisfy a relation of the form ™+ Y. ¢;f* = 0 for ¢; € S(X).
But f is of degree 0, so the equation f™ + Y(c;)of* = 0, where (c;)o € S(X)o = k
denotes the degree 0 part of ¢;, is also valid. In particular, f € L is algebraic over
k, so that f € k for k is algebraically closed. O

7. Remark. The last property is familiar from complex geometry: As a trivial
consequence of the maximal modulus theorem, any holomorphic function globally
defined on a complex compact manifold must be constant.

8. Proposition (tower laws).

(i) If A< B c C are extension rings such that C is a finite B-algebra, and B is
a finite A-algebra, then C is a finite A-algebra.
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(ii) If A ¢ B < C with C is integral over B and B is integral over A, then C is
integral over A.

Proof. (i) By Proposition 25| A[b;] is finite over A. Then proceed by induction
using (i).
(ii) Let ¢ € C satisfy the relation ¢™ +b,_1c" 1 +...+by = 0, with by, ..., b,_1 € B.

Since each b; is integral over A, each extension A < A[bg,...,b,—1] < A[bo,...,bp—1,¢]
is finite by (i). Hence ¢ belongs to an intermediate algebra A < A[bg,...,b,_1,¢] C
C which is finite over A. By 2[f| (iii), c is integral over A. O

9. Proposition and definition (integral closure). The set
A = {be B | b integral over A} c B

is a subring of B. In particular, the sum and the product of two integral rings is
again integral. Moreover, if b € B is integral over A, then b€ A, so that A = A.

We call A the integral closure of A in B. If A = A, then A is called integrally
closed in B.

Proof. If x, y € A, then A[z,y] is finite over A, whence x +y and = - y are integral
over A and thus in A. A = A follows from Proposition 2 O

10. Exercise. Let A c B be a ring extension of integral rings, and let A be
the integral closure of A in B = for any two monic polynomials f, g € B[z] with
fg € Alzx] we have f, g € Alz].

Hint: Consider a field extension B ¢ Quot B < K where f = II(z — &;) and
g = I(z — n;) split.

Proof. Using the hint and the fact that fg = Il(z — &) (x — ;) € A[z] is monic, the
roots € and 7; in K are integral over A. This does not immediately imply that they
are in A, for A is the integral closure in B, not in K. However, it implies that the
coefficients of f and g which are sums and products of the &; and 7; respectively, are
integral over A by Proposition 2@ But f and g € B[z], that is, the coefficients of f
and g are in B. Since they are integral, they are in A, whence f and g € A[z]. O

Normal rings. We now consider a geometrically very important class of rings,
namely normal rings.

11. Definition (normal ring). An integral domain A is called normal or
integrally closed if A is integrally closed in its quotient field.

12. Algebraic examples of normal rings.

(i) As we have seen in Example 23 (i), any UFD is normal.

(ii) A number field is a finite field extension Q ¢ K. By definition, its ring of
integers Ok is the integral closure of Z in K. In particular, Og = Z by (i).
It is an example of a Dedekind ring (Theorem and Example and
as such it is normal. For instance, consider the quadratic number field Q(y/n),
where n is a squarefree integer. Then Og( m) = Z[a] with a = (1 + /n)/2
if n =1mod4 and o = 4/n if n = 2 or mod4. For instance, consider the
second case. Z < Z[+/n] is an integral extension for z? — n € Z[x] is monic.
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Moreover, it is well-known that Z[+/n] is a UFD (see for instance [Bo, Section
2.4]). This is integrally closed in its quotient field which is obviously Q(/n).

13. Geometric examples of normal rings. Let A = A(X) be the coordi-
nate ring of an affine variety X so that Quot A is the ring of rational functions on
X. Hence if A is normal, then any rational function ¢ satisfying a monic relation
O+ Cp10" ...+ o =0 for ¢; € Ais in fact already contained in A. In partic-
ular, it has a well-defined value at any point, that is, an integral rational function
has an extension to all of X. Such extension theorems are familiar in complex
analysis, where under certain conditions, meromorphic functions (corresponding to
rational functions) can be extended to holomorphic functions (corresponding to
regular functions), cf. Riemann’s extension theorem (in complex dimension ome)
or Hartog’s theorem (in higher dimensions).

(i) Let A = C[z] so that X = A! and K = C(x). Then A is normal as a UFD.
Geometrically, if ¢ is a rational function which is ill-defined at a point p, it
must be of the form f(x)/(z —p)*g(z) for f(p), g(p) + 0, that is, ¢ has a pole
of order k. In particular, it cannot satisfy a monic equation, for ¢™ has a pole
of order kn which cannot be cancelled by poéles of lower order.

(ii) Consider the ring A = k[x,y]/(y* — 2®), the coordinate ring of the cusp curve
Y = Z(y? — 23) < A2 Tt is integral with ring of fractions isomorphic to k(t).
Indeed, the map k(t) — Quot A sending f/g(t) to f/g(y/%) is an isomorphism
(check!). In particular, 7 = /% is integral over A (for instance, 72 — & = 0),
but 7 ¢ A: We cannot extend the rational function 7 over (0,0) € Y. On the
other hand, k[t] is normal in k(t) for it is a UFD. This shows that normality
can detect singularities such as the cusp. Indeed, we will see in Section [3| that
a “smooth” curve (more generally, a smooth variety) has always a normal
coordinate ring.

(iii) Consider X = Z(y* —2? —23) < A% with A = A(X) = Rz, y]/(y* — 2% — 23)
(the real numbers are chosen for sake of the geometric argument). In this case,
A is not normal. Indeed, consider the rational function ¢ = §/Z € Quot (A)
for which ¢? —Z — 1 = 0. Hence ¢ is integral. However, it is ill-defined in the
origin. For x and y small we can neglect the 2% term so that the curve near
the origin is approximatively given by y? —x? = 0. Hence it has two branches
near the origin given by y = +z. It follows that ¢ approaches two different
values at the origin depending on the branch which one goes along in order
to reach the origin. This makes ©? well-defined and thus a regular function,
but ¢ ¢ A, that is, we cannot extend ¢ over the origin into a regular function.
To see this, assume that F' is a regular function which extends 7 over (0,0) to
all of X. Since 72 = T we necessarily have F(0,0) = 0. Further, F € A(X)p,
where m is the maximal ideal corresponding to (0,0). Hence, there exists a
(dense) open neighbourhood U of (0,0) and f, g € A(X) with f/g = F and
3(0,0) % 0, where f, g € k[x,y] are representatives of f and g. If U* is the
open set U\{(0,0}, then we get the identity Zf — g = 0 on U*. Since the left
and the right hand side are well-defined on all of X, the identity property of
Corollary 2 gives f — yg = 0 in A(X). Lifting this to k[z,y], it follows
that xf —yg = h(z,y)(y?> — 23) for a polynomial (function) h € k[x,y]. In
particular, we obtaian for x = y = t the identity f —g = h(t,t)(t —t?) in k[t].
Setting ¢ = 0 implies ¢g(0,0) = 0, a contradiction.
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14. Exercise (normal rings in number theory). Let N < B be an integral
extension of integral rings, and assume that N is normal = For any b € B its
minimal polynomial f over k = Quot N has actually coefficients in N.

Let d & 0, 1 be a squarefree integer, that is, no square divides d in Z. Use the first
part of the exercise to show that the integral closure of Z in Q(v/d) = {a + b\/d |
a, be Q} < C is given by

Z={a+b/d|a, beQ, —2a€Z, a*>—db* e Z}.

These rings play an important réle in number theory.

Proof. Since b € B is integral over N, g(b) = 0 for some monic polynomial g € N[z].
Hence, f|g in k[x] by the properties of the minimal polynomial, that is, g = f-h €
N|[z] for some monic polynomial h € k[z]. Applying Exercise 2 with A = N and
B = k shows that f (and h) in N|[z].

We apply this for the computation of N the integral closure of A = Z (which
is normal as a UFD) in B = Q(+v/d). The ring Z is certainly normal for it is
integrally closed in Q = QuotZ. The minimal polynomial of a + by/d over Q is
f(x) = (x —a — bV/d)(z — a + b\/d), and this is integral over Z if and only if
f(z) = 2% — 2az + b*d — a? has integer coefficients. This gives {a + bv/d | a, b €
Q, —2a € Z, a®> — db*® € Z} = Z. The converse inclusion is obvious. O

A further important class of normal rings are valuation rings.

15. Definition (valuation rings). Let A be a subring of some field k; in partic-
ular, A is an integral domain. Then we call A a valuation ring of k if for each
x + 0, either x € A or 2! € A or both.

16. Remark. If A c k is a valuation ring for k, then k = Quot A.
For the moment, our main interest in valuation rings lies in their normality:

17. Proposition [AtMal 5.18]. Let A be a valuation ring

(i) A is a local ring;
(ii) if B is a ring such that A € B < k = B is a valuation ring;
(iii) A is integrally closed in k, that is, any valuation ring is normal.

Proof. (1) Let m be the set of nonunits of A. Since A is a valuation ring this means
that rem < z = 0 or x~! ¢ A. By Proposition [0ll11] we need to show that m is an
ideal:

e If a € A and x € m, then ax € m, for otherwise, (ax)™* = a l27! € A and
thus 271 € A (multiply by a).

e Let 2, y € m. Either zy~! € A or z71y € A. Assume the former (the latter
works similarly). Then z +y = y(1 + 2y~ !) e mA c m.

(ii) Clear from the definition.

(iii) Let = € k be integral over A so that ™ + Z?_Ol a;xt = 0 for some n € N and

a; € A. If x € A we are done. If not, 7! € A, whence z = —ZZ:OI a;ztt1—" e
A. O
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Note that a normal ring is not necessarily a a valuation ring (consider for instance
A = 7). Next we want to prove existence of valuation rings (and thus of a large class
of normal rings). Towards that end we let k be any field, and K be an algebraically
closed field. Let X = {(A4, f) | A < k subring, f : A — K ring morphism}. We
partially order ¥ as follows:

(A4, f)<(B,g) < AcBandgla=f

From Zorn’s lemma we immediately infer the existence of a maximal element in
(B,g) € %, i.e. (B,§) = (B,g) implies B = B, j = g.

18. Theorem [AtMal, 5.21]. Let (B,g) be a mazimal element of £. Then B is
a valuation ring of k. In particular, any pair (A, f) € Xk can be extended to a
valuation ring (B, g).

Proof. We proceed in three steps.

Step 1. (B,m = kerg) is a local ring [AtMal 5.19]. Since g(B) =~ B/kerg is a
subring of a field it must be an integral domain. In particular, m is prime and
B < Bp. We extend g to the localisation By, by setting gm(b/s) = g(b)/g(s). This
is well defined for s € Sy = B\ ker g, whence (B, g) < (Bm,gm) € X . But (B,g) is
maximal, whence B = B, is a local ring with maximal ideal m® = m.

Step 2. Let 0 + x € k, and let m[z] be the extension of m with respect to B —
Blz]. Then either m[z] + B[x] or m[z~!] + B[z~!] [AtMal 5.20]. Suppose that
m[z] = B[z] and m[z~1] = B[z~!]. Then we have equations

Z wz' =1, u;em (4)

i=0
n

Zvl “t—1, vem

for which we assume that n and m are minimal. If m > n we can multiply the
second equation by z™ and get

1—’00 Zvl Z.

Since vy € m, the first step and Proposition [011] (iv) imply that (1 — vg) is a
unit so that we obtain the identity 2™ = Z?;o wixi. Replacing the powers z"*?,
i=0,...,m—nin yields a contradiction to the minimality of m. The case
m < n is treated similarly.

Step 3. Conclusion. Let 0 + x € k. We have to show that either x € Bor 2~ ! € B.
By the previous step we may assume that m[z] is not the unit ideal in B = B[z]
so that m[z] is contained in a maximal ideal @ of B (otherwise we replace m[z]
by m[z~!] and argue in the same way). Then m n B = m for m n B is a proper
ideal of B containing m. The embedding B — B thus induces an embedding of the
residue field I = B/m — [ = B/m. Since [ = {3.b;Z" | b; € B/m}, where Z is the
residue class of z in B/, we have [ = I[Z]. Moreover, Z is algebraic, for if z ¢ @,
maximality of m implies the existence of a € m and p = Y. b;z* with a + pz = 1.
Hence we find > b;7¢71 —1 = 0 for the corresponding residue class. In particular, it
follows that [ < [ is an algebraic field extension. Now g induces a natural inclusion

: 1 — K for m = kerg. Since K is algebraically closed, and | lis algebraic,
we can extend g to an inclusion g : |- K. Composing with the projection Bl
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yields a pair (B, §) which extends (B,g). By maximality, B = B and therefore
r e B.

O

19. Exercise [AtMal Exercise 5.27]. Let (A, m) and (B, n) be two local rings. We
say that (B,n) dominates (A,m) if Ac Band m = Ann. Let K be a field and let
Yk be the set of al local subrings of K. Order ¥ by domination. Show that

(i) Xk has a maximal element;
(ii) an element is maximal < it is a valuation ring.

In particular, any local ring in some field (for instance, the local ring of a variety
which sits inside the field of rational functions) is dominated by a valuation ring.

Hint: Use Theorem 2[18

As we have remarked above, a normal ring is not necessarily a valuation ring. It is,
however, the intersection of valuation rings. In fact we have more generally the

20. Corollary [AtMal 5.22]. Let A < k be a subring of a field k. The integral
closure A of A in k is the intersection of all valuation rings of K which contain A.

Proof. <) Let B be a valuation ring of K such that A ¢ B. Since B is integrally
closed by Proposition 2 we certainly have A c B.

o) By contraposition: Let x ¢ A. We have to show that x ¢ B for some valuation
ring B containing A. First we note that z is not in the ring A = A[z~'] for
otherwise, z = Z?:o a;x~% so that multiplying by ™ would give a monic relation
on z with coefficients in A, whence z € A. Therefore, 2! is not a unit in A
and is therefore contained in some maximal ideal @ of A. Let K be the algebraic
closure of [ = fl/rﬁ. Compounding with the inclusion A < A yields a map 4 — K
which can be extended to a valuation ring (B, g). Restricted to /1, g| 4 maps any
element in m to zero, in particular g(z~!) = 0. This implies ¢ B for otherwise,
1 = g(zx~!) = 0. Hence B is the desired valuation ring. O

Next we want to show that normality is a local property in accordance with our
idea that normality links into the geometric idea of regularity. First we prove:

21. Lemma (Integrality is preserved under taking quotients and localis-
ing). Let A c B be an integral ring extension.

(i) If b is an ideal of B and a = b = A n b, then B/b is integral over A/a.
(ii) If S is a multiplicative set of A, then S™'B is integral over S™1A.
Proof. If b e B we have b" + a1b" "' 4+ ... + a,, = 0 with a; € A.
(i) Reducing this equation modulo b gives the desired polynomial relation.
(ii) Let b/s € ST'B. Then (b/s)" + (a1/s)(b/s)" ' + ... + a,/s" = 0. O

22. Lemma (integral closure and localisation). Let A < B be a ring exten-
sion, and let S be a multiplicative subset of A. Then S™'A is the integral closure
of ST'A in ST'B.
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Proof. By Lemma 2 S~1A is integral over S__lA. It remains to show that if
b/s € ST1B is integral over S~ A, then b/s € ST A. First, we have

(b/8)™ + (a1/s1)(b/s)" L + ... + an/Sn =0,

where a; € A, s; € S. Let t = s1 ... s, and multiply the latter equation with
(st)™. Then it becomes a monic relation on bt with coefficients in A, that is bt € A.
Hence b/s = bt/st € STLA. O

23. Proposition (normality is a local property). Let A be an integral domain.
Are equivalent:

(i) A is normal;

(ii) Ay is normal, for each prime ideal p;

(iii) Aw is normal, for each mazimal ideal m.

Proof. Let k = Quot A and f : A < k — A < k be the restriction of the identity
mapping Idy. Then A is normal < f is surjective. By Lemma 2[22] A, and Ay
are normal if and only if S;'f and S;'f are surjective, whence the assertion by

Proposition [[TT4] O

Going up and going down. As we have seen we can think geometrically of
an integral ring extension A(X) — A(Y) as a finite (ramified) cover Y — X. In
particular, one should be able to lift subvarieties of X to subvarieties Y, or more
algebraically, prime ideals to prime ideals. This “lying over” property will occupy
us next.

24. Lemma (Integral ring extensions and fields). Let A ¢ B be an integral
ring extension of integral domains. Then A is a field < B is a field.

Proof. =) Let 0 # be B. Since A c B is an integral ring extension, b +a,,_1b" !+
...+ ap = 0 for some a; € A and minimal n € N. In particular, ag & 0 (otherwise,
n would not be minimal). Since A is a field, ag is invertible whence b is invertible
with inverse

bt = —ag (0"t +ap_1b" 2+ .. azb +a1) € B.

1

<) Conversely, assume that 0 & a € A. Then ¢~ exists as an element of B whence

(@) +ap1(@ )" P+ .. +ag=0

with coefficients a; € A and a9 + 0. Multiplying by a”~ ! shows that a=! =
—Qp_1 — Gp_20 — ... —a" " tag € A. O

25. Corollary. Let A < B be an integral ring extension.

i) Let q be a prime ideal of B. Then q° = q n A is mazimal < q is mazimal.
i) L b ime ideal of B. Then q° A imal ' imal
(ii) Let q < q' be prime ideals of B such thatp = q° = q'°. Thenq=¢'.
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Proof. (i) B/q is integral over A/q° by Lemma 2[21] Now apply Lemma 2[24]

(ii) By Lemma 2 A, © (A\p)~'B =: B(p) is integral. Let m be the extension
of pin A,, and let n  n’ be the extensions in B(p) of q < q’ respectively. Then m
is the maximal ideal of A, (cf. [LI00), and n® = n'® = m (indeed, if a = b = AN b
for an ideal b — B in a ring extension A < B, then S~!la = S7!A n S~1b =
(S71b)¢, where the contraction is now being taken with respect to the ring extension
S1—1A < S7!B, cf. Proposition (ii)). So n and n’ are maximal by (i), and
n < 1/, whence n = n’. But then q = ¢’ by Corollary (v), since q and ¢’ do
not intersect A\p. O

26. Theorem (“lying over”). Let A c B be an integral ring extension, and let
p < A be prime = there exists a prime ideal ¢ < B such that ¢ = Anq=p.

Proof. Let again B(p) denote the localisation (A\p)~!B. The natural diagramm

A B
-
A, — B(p)

in which the horizontal arrows are inclusions, is commutative. Let n be a maximal
ideal of B(p). Then n® — A, is maximal by the previous corollary, and thus n® = p°,
the unique maximal ideal of the local ring A,. If ¢ = 7' (n), then q is prime and
g“=qnA=p. O

The previous theorem can be refined to the following relative versions:

27. Theorem (“going-up”). Let A — B be an integral ring extension. Moreover,
let p, p’ be prime ideals of A with p < p’, and let q be a prime ideal of B such that
q¢ = p. Then there exists a prime ideal ' > q of B such that q'° = p’.

Proof. Let A = A/p and B = B/q. Then A c Bis an integral ring extension.
Hence, there exists a prime ideal § in B such that § n A = the image of p’ in Alp.
Contracting § via the projection map B — B yields the desired prime ideal. 0

28. Exercise. Let ¢ : A — B be an integral ring extension (considering v as
an inclusion). Show that the associated map 1* : Spec (B) — Spec (A) defined by
1*(q) = qn A is a closed mapping, that is, it maps closed sets to closed sets.

Proof. The closed sets of Spec (B) are V(b) = {q € Spec(B) | b < q} for b ¢ B
an ideal of B. We show that (V' (b)) = V(b°). The inclusion c is trivial, so let
p be a prime ideal of A containing a := b°. We need to find q € Spec (B) with
q¢ = p. Lemma 2 (i), A:= A/a c B := B/b is an integral extension. Now p,
the image of p in A is prime, so that by the lying-over property of integral ring
extensions, there exists a prime ideal q of B whose contraction gives p. Contracting
with respect to the projection map B — B yields the desired q € Spec (B). U
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In a similar vein, one can prove the

29. Theorem (“going-down”). Let A < B be an integral ring extension.
Assume that A is normal and B an integral domain. Assume that p < p’ are prime
ideals of A, and that there exists a prime ideal ¢ < B such that ¢’ =q' n A =yp’
= There exists a prime ideal q = ¢ < B such that q¢ = p.

Proof. The proof is slightly more technical, see for instance [AtMal Theorem 5.16].
The normality is used to apply Exercises 2[T4] O

We summarise our discussion in Figure 2]14]

L ey qed
Con \['LY‘G@L(.OV\
S £ pey f(C);e'

(a) (L)

FIGURE 14. Extension and contraction for integral extensions: (a)
lying-over (b) going-down (c¢) going-up. The red colour indicates
existence.

30. Geometric interpretation. To get some geometric feeling for integral
ring extensions we interpret the previous theorems in terms of ramified covering
maps. In general, a continuous surjective map 7w : X — Y between connected
topological spaces which restricted to X minus a finite set of points is a local
homemomorphism and such that the fibres are finite is called a (ramified) covering
map. The cardinality of the fibre is the degree of the map. Generically, where
7 is a local homeomorphism, the fibre has precisely degw points; multiple points
(where the covering map “branches” or “ramifies”) occur where 7 fails to be a local
homeomorphism.

In our geometric situation, connected topological spaces correspond to varieties,
say affine ones. The surjective map m : X — Y can be thought of as an injective
k-algebra morphism 7 : A(Y) < A(X). If this ring extension is integral, then
any maximal ideal of A(Y") (corresponding to a point of Y') is the contraction of
a maximal ideal of A(X) (corresponding to a point of X). This is essentially the
surjectivity property of the covering map m. The finiteness of the fibre was partially
discussed in 2[4] cf. also Example 2[32] Finally, the previous Exercise shows that
7t is a closed map which corresponds to the local homeomorphism property of 7.
In this way we should think of an integral extension of coordinate rings in terms of
ramified coverings of the corresponding affine varieties.
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31. Remark. For later use we state the following two theorems without proof:

(i) Incompatibility theorem: If A c B is an integral ring extension, and g,
q' are distinct prime ideals in B whose contractions coincide, g n A =q' n A
= qd¢ q and ¢’ ¢ q (cf. [GaCAl Proposition 9.20]). Geometrically, this will
imply that the dimensions of X covering Y are the same, cf. Proposition 358

(ii) Finiteness of integral closure: If A(X) is the affine coordinate ring of some
affine variety over k, and if Kx = Quot A(X) < L is a finite extension, then
the integral closure A(X) < L is also a finitely generated k-algebra, that is, it
is the affine coordinate ring of some affine variety (see [Hal Theorem 3.9A].)

2.2. Noether normalisation and Hilbert’s Nullstellensatz. Hilbert’s Null-
stellensatz is an easy consequence of Noether normalisation. To motivate the latter
we consider the following

32. Example (geometric motivation of Noether normalisation). Consider
the ring extension A = k[z1] € B = k[x1,z2]/(x122 — 1) (where we identify f e A
with the residue class f € B so that A becomes a subring of B). Of course, B
is not integral over A for the “lying-over” property fails for the origin, i.e. the
prime (in fact maximal) ideal mg < A (cf. Example 2. However, performing
the coordinate change =1 = y; + y2, x2 = —y1 + y= gives a finite ring extension
k[y1] < kly1,v2]/(y? —y3 — 1) = B for 42 — % + 1 = 0 is a monic relation on ys,
cf. Proposition 2[f] and Figure 2[15]

Y [ M)

X [ AX) = kTx) A(X)=hIx)

FI1GURE 15. A geometric example of Noether normalisation.

Let B be a k-algebra. Recall that B is finitely generated if B = k[aq,...,q,]
for some ay, ..., an,, or equivalently, if we have a surjection k[z1,...,2,] > B — 0
so that B = k[z1,...,2z,]/a. Recall that elements a1, ...a, € A are algebraically
independent if the natural surjection

klz1,...,2n] = kl[a1,...,a,] = 0

sending x; to a; is actually an isomorphism of k-algebras, that is, we have an
injection k[x1,...,2,] — A by sending x; to a;. Put differently, there is no nonzero
polynomial relation of the form f(ay,...,a,) = 0 for f € A[n], and A is just
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a polynomial algebra in the unknowns a;. In the previous Example 2[32] where
B = k[z1,x2]/(z122 — 1) is a finitely generated k-algebra, we saw that we could
find an injection k[y;] — B such that B became a finite ring extension of k[y].
More generally we have the

33. Theorem (Noether normalisation lemma). Let B be a finitely generated
k-algebra. Then there exists algebraically independent elements y1,...,yx € B such
that B is finite over A = k[y1,...,yx]. In other words, a ring extension k — B
given by a finitely generated k-algebra B can be written as a composite

kcA=kly,...,u] < B,

where A is a polynomial algebra over k and B a finite module over A.

34. Remark. Though we have not a rigorous definition of dimension yet we can
interpret the number [ as the dimension of the variety with coordinate ring B, cf.
also Figure 2[T5] where this variety is clearly one dimensional. The induced map
Spec B — Spec A = AF can be regarded as a ramified covering.

35. Proof of Theorem 233 We will proceed in three steps, assuming that &
is infinite (though the theorem holds for general k).

Step 1. Let 0 + f € k[z1,...,z,] be a homogeneous polynomial of degree d. Then
there exist ai,...,a,—1 € k such that f(ai,...,an—1,1) £ 0. By induction on n.
The case n = 1 is trivial for f = z%. So assume n > 1 and write f = Z?:O fixt,
where f; is a homogeneous polynomial of degree d — ¢ in xs,...,x,. Since f +
0 we have f; + 0 for at least one i. The induction hypothesis applies so that
filag,...,an—1,1) % 0 for certain as,...,a,—1. In particular, f(-,as,...,ap,-1,1) €
k[z1] is a non-zero polynomial which has only finitely many roots. It follows that
fla1,...,an,,1) % 0 for almost any choices of a; € k (here we use that & is infinite!).

Step 2. Let B = k[by,...,b,] be a finitely generated k-algebra and suppose that
there is0 % f € k[z1,...,2z,] a polynomial of degree d. Then there existay, ..., an_1
k such that f(by + a1bp, ..., bp—1 + ap—1by,by) = 0 is monic in b, over the ring
k[by,...,bp—1]. Indeed, write f = thwmn Cmyomn X1t - oo -xim. Then the
leading term of

F(b1 + @by, ... by1 + an_1bn,by)
= > oo (01 + @1by)™ o (bt + gy by) ™ b

m17'~~;mn7zmi:d

in b, is equal to

m Mn—173d d
Z Crmy oo @Y ey, MG = fala, ... an—1,1)b%,

where fa(z1,..,%n) = X0 4ty —d Cmam, Ty oo T denotes the (homoge-
neous) degree d part of f which is not zero for f has degree d. By the first step we
can choose aq,...,a,—1 € k such that fy(a1,...,a,—1,1) # 0 which is therefore a

unit in k[by,...,bn_1].

Step 3. We now prove the theorem by an induction on the number n of generators
b; of B. For n = 0 there is nothing to prove since B = A = k. If n > 0 and
the generators by,...,b, € B are algebraically independent over k, then again
we can take B = A = kf[y1,...,yn] with y; = b;. So assume that we are given
n generators by,...,b, € B such that B = k[by,...,b,] and that there exists
0+ fek[z,...,x,] such that f(by,...,b,) =0. Fora; e k,i=1,...,n—1 we put
b, =b;—aby,i=1,...,n—1,b =b, so that k[b},..., 0], _1,b0,] = k[b1,...,b,] =

€
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B. Hence f(b1,...,b,) = f(b) + a1bl,,..., 0] + a1b),, b)) = 0 so that if we choose
the a; as in the previous step, b, = by, is integral over A’ := k[b},...,b,,_1] < B. In
particular, B = A’[b,] is finite over A’. By induction hypothesis, A’ is finite over

A =kl[y1,...,y] for y; € A’ algebraically independent, so that B is finite over A.l

36. Theorem (weak Nullstellensatz). Let k be a field, and k < K be a field
extension such that K is finitely generated as a k-algebra. Then K is a finite field
extension over k, i.e. [K : k] < oo.

Proof. By Noether normalisation 2[33] K is finite, hence integral extension of some
polynomial ring A = k[y1,...,y,]. Since K is a field, so is A by Lemma 2[24] But
the polynomial ring A can be a field only if n = 0, i.e. A = k. Hence [K : k] <
0. ]

3. LOCAL PROPERTIES

Next we want to study geometric properties of varieties which are local, that is, they
can by studied by restricting attention to an affine neighbourhood. The example
of the cuspidal curve showed that geometric properties (the existence of a cusp)
is reflected in the algebraic properties of the coordinate ring (its nonnormality).
Our line of attack is therefore to reformulate these properties in terms of algebraic
properties of the underlying function rings.

3.1. Completions. One way of studying local properties is localisation of rings.
The local rings we obtain this way still carry a lot of information. We saw in Exer-
cise that the local ring Ox , of a point a € X determines X up to birational
isomorphism. Another idea to study local properties is the completion of rings. To
get an intuitive idea, we consider a polynomial ring k[z1,. .., z,] whose completion
is the ring of formal power series k[z1,...,z,]. In a way, this imitates transcen-
dental techniques from complex algebraic geometry where we can use holomorphic
functions — power series converging uniformly near a point. Geometrically, this
means to focus on “small” neighbourhoods unlike big open dense sets. Still, com-
pletion keeps two essential properties of localisation: it is an exact operation and
preserves the Noether property. To give a concrete idea, consider the integral ring
extension k[z] < k[r,y]/(y* — 2 — 1). This corresponds to a ramified finite cover
which generically is 2 — —1. In the neighbourhood with no branching points one
should be able to invert this map and to find local sections of this covering — this
is certainly true if £ = R or C when we have the inverse function at our disposal.
However, the map x — +/x + 1 is not polynomial so that if we are working with
polynomial rather than smooth or holomorphic functions, local section do not exist.
However, v/z + 1 possesses a formal development so that at the level of power series
there is indeed an inverse k[z,y]/(y?—2—1) — k[z], 2 — 2,y — 1+3/2—22/8+. ...
In general we will consider a ring A with ideal a whose powers induce a topology on
A, the so-called a-adic topology. Completing this topology gives the completion A.
Similarly, one can complete A-modules. The most important instance of this are
completions of local Noetherian rings (A, m) (such as the stalks Ox ,) with respect
to m. In particular, we want to prove the

1. Theorem. Let (A, m) be a Noetherian local ring with completion A.
(i) (/l,m/l) is a Noetherian local ring with natural injective homomorphism A —
A-

)
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(ii) of M is a finitely generated A-module, its completion M with respect to m is
isomorphic as A-module to M ®4 A.

A second important statement which we will state more precisely below, is Cohen’s
structure theorem 3[84] In a simplified version it reads as follows.

2. Theorem (Cohen, special case). The completion of the stalk of regular
functions at a € A™ corresponding to the mazimal ideal m, namely the localisation
k[z1,...,2n]m, 18 isomorphic to k[x1,...,z,].

In a way, we can think of the completion of the stalk of regular functions of a
(smooth) variety (yet to be defined) as ring of power series in the coordinates.

3. Definition. We say that two points a € X and b €Y of two varieties X and Y
are analytically isomorphic if Ox , = Oy.

In particular, any two points of A™ (or more generally, of a smooth variety, cf.
Corollary 3.77?) are analytically isomorphic in accordance with the intuition coming
from classical manifolds. A less trivial example is this.

4. Example. Let X be the plane nodal curve given by y? — 22 — 22 = 0 in

A? and Y the reducible algebraic set zy = 0. Let us show that X and Y are
analytically isomorphic at the point (0,0). By Corollary proven below we have
Ox.o = k[z,y]/(y> — 2* — 23) (where we view the ideal (y> — 2 — 2%) as an ideal
in k[z,y]). Similarly, Oy, = k[z,y]/(xy). The key point is that we can factor
y?—x?—23 into formal power series g = y+x+ga+g3+...and h = y—x+ho+hz+...
in k[x,y] with g; and h; homogeneous of degree i, that is, y*> — 22 — 2® = gh.
We can construct g and h step by step. Namely, (y — x)g2 + (y + h)hy = —a3
since 2% lies in the ideal generated by y — z and y + z, and so on. Therefore,
@X,O = k[z,y]/(gh). Since g and h begin with linearly independent terms, we can
define an automorphism of k[z,y] which sends g and h to x and y, respectively.
Hence @X,o > kfz,y]/(zy) = Oy. Geometrically, this corresponds to the fact
that near the origin (in a Euclidean sense!), X looks like Y, see Figure 3

M-x).
\alg-wl

FIGURE 16. The local equivalence between Z(y? — z2 — 23) and Z(zy).
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Topology. Let G be a topological Abelian group, not necessarily Hausdorff.
This implies in particular that the translations T, : G — G, Ty(g9) = a + g are
continuous maps and in fact homeomorphisms (with inverse T_,). The topology of
G is therefore determined by the neighbourhoods of 0 € G.

5. Exercise. Let H be the intersection of all neighbourhoods of 0 in G. Then
(i) H is a subgroup;

(ii) H is the closure of {0};

(iii) G/H is Hausdorff;

(iv) G is Hausdorff & H = 0.

Proof. (i) Let z; € H, and let V' be a neighbourhood of 0. We have to show that
x1 + x9 € V. By continuity of + there exist U; neighbourhood of 0 such that
Uy +Us c V. Since x; € H, x; € U;, hence ©1 + 19 € V.

(i) xe H Y seHeoe T, (U) for any neighbourhood U of 0 < 0 € V' for any
neighbourhood V of z < 0 € {0}.

(iii) By (ii), cosets a + H are closed. Hence the points of G/H are closed which
means that G/H is Hausdorff.

(iv) Trivial. O

Next assume that 0 € G has a countable fundamental system of neighbourhoods
(this avoids using nets instead of sequences). Then we can define the completion
of G to be the space G of all Cauchy sequences (2,,) modulo the equivalence relation
(2n) = (yn) < &n —yn — 0. Addition of Cauchy sequences gives G a natural group
structure. To define a topology on G we specify the open neighbourhoods of 0 = (0)
of G: For any open neighbourhood U of 0 in G, we let U be the set of equivalence
classes of sequences which eventually ly in U. This turns G into a topological
group. For instance, if G = Q then G = R. Note that we have a natural map
¢ : G — G, $(x) = () the constant Cauchy sequence x, = x for all n. Then
ker¢) = (YU = H where U is an open neighbourhood of 0. In particular, ¢ is
injective < (G is Hausdorff. If ¢ is an isomorphism, we say that G is complete. In
particular, G must be Hausdorff. Next, if f : G — H is a group morphism between
Abelian topological groups with countable fundamental systems of neighbourhoods
for 0, then f maps Cauchy sequences to Cauchy sequences (check!) and induces
thus a (continuous) group morphism f : G > H. Since g/o\f =go f we obtain a
covariant functor.

In the following we restrict to the situation where we have a fundamental system
of neighbourhoods of 0 of subgroups G,, of G

G=GyoG1o2Gy>...o0G,D....

The most important class of examples arises as follows.

6. Definition (a-adic topology). Take G = A a ring, and let G,, = a™ for an
ideal @ € G. The topology induced on A is called the a-adic topology. For this
topology, a sequence (g;) € G is Cauchy if and only if for all n there exists N(n)
such that g, — g; € a” for all 4, j = N(n).

Since a is an ideal, the resulting completion A is in fact a topological ring, and
¢ : A — Ais a ring morphism with kernel (| a™. More generally, we can consider
A-modules M, i.e. G = M and G,, = a”M. Its completion M is a (topological)
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A-module, and any A-module morphism f : M — N determines an A-linear map
f: M — N between the respective completions.

7. Example. Let A = k[z] and a = (). Then A = k[z], the ring of formal power
series. Indeed, let (a,) be a Cauchy sequence in A. Then a,, = Zfﬁo ci(n)xt. Since
an — Ay € (xM) for n, m > N, the first M terms must be fixed for any a, with
r = n. Hence the “Taylor development” of the a,, stabilises for N — oo, and the

higher gets M, the closer Y\, ¢z’ gets to 0, i.e. Yo, ¢z’ — 0 as M — 0.

Of course, different filtrations, i.e. infinite chains of the form M = My > M; o> ...
of submodules of M can give rise to the same topology as a™ M.

8. Definition (stable a-filtrations). A filtration (M,,) is called an a-filtration
if aM,, € M, for all n. If we have equality for all sufficiently large n, then the
filtration is called a-stable.

Of course, the prototype of a stable a-filtration is M,, = a M.

9. Lemma (stable o-filtrations induce the same topology). If (M,) and
(M) are stable a-filtrations, then there exists an integer k such that My, < M, <
M,y for alln = k, i.e. both filtrations have bounded difference. In particular,
all stable a-filtrations induce the same topology.

Proof. Without loss of generality, M/ = a™M. Since aM, < M,; we have
M, ., < M), = a"M c M, for all k and n. The last inclusion becomes equal-
ity if n > k for k sufficiently big, whence M, = a" My < a™My = M],. (]

To understand the previous examples from an algebraic point of view, the following
alternative contruction of completions is useful. Open sets always contain open sets
of the form = + G, which defines an element in G/G,,. On the other hand, if (z,)
is a Cauchy sequence, then for any m € N there exists mo with z; — z; € G,, for
all ¢, j > mg. Hence, the image Z; = x; + G, in G/G,, of the Cauchy sequence
is ultimately constant, equal say to &,,. Under the projection w41 : G/Gpe1 —
G/Gp, &n maps to &,11 (if all but a finite number of the x; are contained in
Gpt1 then they are also contained in G, D G,,+1). We also say that (&,) is
a coherent sequence in the sense that m,,4+1({m+1) = &n for all m. Further,
equivalent sequences obviously define the same sequence (&,). Therefore, we can
view (3 as the set of coherent sequences with its obvious group structure. Now in
general, a sequence of groups {H,,} with morphisms 6,,.1 : H,+1 — H, is called an
inverse system, and the group of coherent sequences is called the inverse limit
for which one writes lim H,,: Coming back to our case we can identify liLnG/Gn

with G as defined in the sense above.

10. Example.

(i) Let A = Z, a = (p) for p prime. Then A = lim Z/pnZ is the ring of p-
adic integers given by infinite series (ay)i_, with 0 < a, < p” — 1 and
Qp = Qpy1 modp™.

(ii) Let A = k[z1,...,2,], m = (x1,...,2,) the maximal ideal corresponding to
the origin. Then kfx1,...,2z,] = A.
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The main advantage of this algebraic description comes when dealing with exact
sequences. An exact sequence of inverse systems 0 — {4,} — {B,} —
{Cy} — 0 consists of a commutative diagramm

0 An+1 Bn+1 — Cn+1 —0
0 A, B, Cn 0

of exact sequences.
11. Proposition. If 0 — {A,} — {Bn} — {Cn} — 0 is an exact sequence of
inverse systems, then

0—limA, - lmB, - lmdC,

is exact. Furthermore, if {A,} is surjective, that is, the projections maps 7, of
the inverse systems are always surjective, then

O—»@An—ﬂir_an—»liglCnaO
15 exact.

Proof. This is essentially an application of the Snake lemma|0}{49] see [AtMal, Propo-
sition 10.2]. O

Note that inverse systems of the form {G/G,} are always surjective.

12. Corollary (completion is an exact functor). Let 0 —» G’ — G — G” 50
be an exact sequence of groups. Let G have the topology defined by a sequence {G,,}
of subgroups, and endow G’ and G” with the induced topologies defined by G' N G,
and p(Gr). Then

0-G ->G—-G" -0
is an exract sequence of groups.
Proof. Apply Proposition 3[T1] to the exact sequence
0—-G/(G nG,) - G/G, - G"/p(G,) — 0.

13. Corollary. G, is a subgroup ofé and
G/G, =~ G/G,,. (5)
In particular, G~ G, that is, the completion is actually complete.

Proof. Apply the previous corollary with G/ = G,, and " = G/G,, yields G,, =~
G/G, = G". Since the induced topology on G” is discrete, G" = G" = G/G,,.
Finally, taking the inverse limit of shows that G = limG/G,, = limG/G,, =

G. O
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If (M,,) is a filtration for an A-module My = M, a submodule N < M inherits a
natural subfiltration N n M,,. Our next goal is to establish the following

14. Theorem. Let A be a Noetherian ring, a an ideal of A, M a finitely generated
A-module, and N a submodule of M. Then the filtrations a® N and (a™M)nN have
bounded difference. In particular, the a-topology of N coincides with the topology
induced by the a-topology of M.

Proof. The proof will be based on a series of lemmatas. We introduce some notation
first. Let A be a ring and a be an ideal of A. Then we define the graded ring
A* = @,,5( " More generally, if M is an A-module with a-filtration (M,,), then we
put M* = @,,. o M,. Thisis agraded A*-module, since A,,,M,, = a™M,, © My 1.

15. Lemma. Let A be a Noetherian ring, M a finitely generated A-module, and
(My,) an a-filtration of M. Are equivalent:

(i) M* is a finitely generated A*-module;
(ii) The filtration is stable.

In particular, any a-filtration of a finitely generated A*-module M for A Noetherian
induces the same topology on M.

Proof. Since M must be Noetherian by Corollary each M,, must be finitely
generated, and hence so is Q,, = @,_, M; € M* ={m,...,m,). To turn Q,, into
an A*-submodule, we put
M: = Qn @ @ aiMn.
i>1
This is generated by my,...,m, over A*. Now {M*} forms an anascending chain
whose union is all of M*. Now

M* is finitely generated as an A — module <
the chain stops <
M* = M} for some ng <
Myytr =a"M,, foralr>0<
the filtration is stable,

whence the result. t

16. Proposition (Artin-Rees). Let A be a Noetherian ring, a an ideal in A, M
a finitely generated A-module, (M,,) a stable a-filtration of M. If M' is a submodule
of M = (M’ nM,,) is a stable a-filtration of M'. In particular, taking M,, = a" M,
then there exists an integer k such that
(a"M) M =a"F((a"M) A M)

foralln = k.

Proof. We have a(M' n M,) c aM’' naM,, € M’ n My, hence (M’ n M,,) is
an a-filtration. This defines a graded A*-module which is a submodule of M* and

thus finitely generated (for M* is by the previous lemma, and A is Noetherian).
Again, Lemma 3 implies that (M’ n M,,) is stable. O

Lemma 3[9 immediately implies Theorem 3[14] ]
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In particular, exactness of the completion (Corollary 3 gives

17. Proposition (completion is exact on finitely-generated modules over
Noetherian rings. Let

0—-M —-M-—>M' -0
be an ezxact sequence of finitely generated modules over a Noetherian ring A. Let a
be an ideal of A = The sequence of a-adic completions

0—>M —M-—M -0

s exact.

The completion A is a natural A-module via the completion map A — A. In
particular, given an A-module M we can form the A-module A®4 M. Moreover,
there is the completion map M — M which is also an A-module morphism. Hence
we get an induced sequence of A-module morphisms

AQsM - A®s M - A®; M = M.
This induced map behaves particularly well for A Noetherian and finitely generated
M.

18. Proposition. If M is finitely generated = A @4 M — M is surjective. If,
moreover, A is Noetherian = A®a M — M is an isomorphism.

Proof. If M is finitely generated, we get an exact sequence 0 - N — F' — M for
a free A-module F' =~ A™. It follows from Corollary 3 that a-adic completion
commutes with taking direct sums so that for F >~ A", AQ4 F =~ (A®4 A)" ~ A",
This gives rise to a diagramm

A@ANHA@)AFHA@AMHO

A

0 N a g M 0

in which the top line is exact since (121® A is right exact). Moreover (again by
Corollary 3 ¢ is exact which implies that « is surjective for [ is an isomorphism.
Moreover, if A is Noetherian then N is finitely generated as an A-submodule of a
finitely generated A-module which implies that 7 is surjective, and thus that the
bottom line is exact. This in turn implies that « is injective, hence an isomorphism.

O

19. Corollary. If A is Noetherian = The functor T is exact on the category
of finitely generated A-modules. In particular, it follows from Proposition [0[74 that
the a-adic completion A of A is a flat A-algebra.

For the next proposition, recall that the Jacobson radical J(A) of a ring A is the
intersection of all maximal ideals (see Section [Oi0.1).

20. Proposition (further properties of 121) Let A be Noetherian with a-adic
completion A=

(i) a~A®4a=Aa=a;

(if) o = (@)";
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(ili) a"/a™*! = a”/ant

(iv) a is contained in the Jacobson radical of A.

Proof. (i) Since A is Noetherian, a is finitely generated. In particular, the map
A®4a — @ is an isomorphism. Since A is flat, the injection 0 — a — A induces an
isomorphism a ® 4 A— A®a A~ M, which sends x ® a to x - a. Hence the image
of this isomorphism is just Aa = a®, where the extension is taken with respect to
the natural completion map 4 — A.

(ii) Applying (i) to a™ we see that a” = Aa™ = (Aa)™ since extension commutes
with taking powers (see for instance [AtMal, Exercise 1.18]). But the latter is equal
to (a)™.

(i) From (5) we immediately deduce that A/a™ =~ A/a" from which (iii) follows by
taking quotients.

(iv) For any x € 4, the sequence a, = >, x* is Cauchy in A for its a-adic topology.
Further, as a completion, A is itself complete. Therefore, a, converges to >, x? =
(1—2)~!, that is, 1—z is a unit. From Proposition[021]it follows that a = J(4). O

21. Corollary (A is local if A is local). Let (A,m) be a Noetherian local ring
= the m-adic completion A of A is a local ring with maximal ideal M.

Proof. By the previous proposition we have A/t >~ A/m, hence A/ is a field, so
m is a maximal ideal. Further, m is contained in J(A), hence is equal to it by
maximality. Hence m is the unique maximal ideal, and (A, @) is a local ring. O

22. Corollary.
(i) Let A be a Noetherian ring, and a be an ideal. Then the a-adic completion is

A=~ Alzy, .. za]]/ (21 — a1, .. 20 — ay)

for elements a; € A.
(ii) The completion of the coordinate ring A = k[x1,...,x,]/a with respect to the
maximal ideal m = (Tq,...,Ty,) is

A= Ekxy,... z0]/ak[zy, ... z0].

Proof. (i) Since A is Noetherian, a is finitely generated, say by aq,...,a,. We
consider the exact sequence of finitely generated A[zq,...,x,]-modules

0——(z1—a1,...,&n —an) —> Alz1,..., 2] —>=A——>0

induced by the evaluation morphism A[x1,...,x,] — A sending z; to a;. Com-
pletion by the ideal b = (21,...,,) of A[z1,...,,] is exact by Proposition 3[17
Further, the completion of A with respect to b coincides with the completion by a.

(ii) Consider the exact sequence of finitely generated k[z1,...,z,]-modules 0 —
a— k[z1,...,2,] = A — 0 and apply Proposition 3 as well as (i) from Propo-
sition 3201 O

23. Example. Let us compute the completion of the ring k[z,y]/(y? — 22 — 23)
localised at the maximal ideal (x,y), i.e. the ring Oy, cf. Example 3 By the ex-
actness of localisation, (k[z,y]/(y* — 2 —2%)) (44 is isomorphic to k[z,y] s 4)/(y* —
2 — x3) (considering (y*> — 2 — 2®) as an ideal in k[z,y],,,)). By the previous
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corollary as well as Cohen’s structure theorem 3 the completion of k[x,y] (s, is

k[z,y] whence Oy, = k[z,y]/(y* — z* — 2*) (considering now the extended ideal
(y? — 22 — 23) as an ideal in k[x,y]).

24. Theorem (Krull). Let A be a Noetherian ring, a an ideal of A, M a finitely
generated A-module and M the a-completion of M = The kernel N = mn>0 a M

of the completion M — M consists of those x € M annihilated by some element of
14 a.

Proof. If (1 — a)x = 0 for some a € a, then = ax = a?z = ... e(\_, a"M = N.
Conversely, we note that the induced topology on N is trivial, i.e. N is the only
neighbourhood of 0 € N since N is the intersection of all neighbourhoods of 0 € M.
But it follows from Artin-Rees that this trivial topology coincides with the a-adic
topology of N. In particular, since aN is an open neighbourhood of 0, aN = N.
Since A is Noetherian and M is finitely generated, so is N. By Cayley-Hamilton

(cf. Corollary [0l57)), there exists a € a such that (1 —a)N = 0. d
25. Remark.

(i) If S is the multiplicatively closed set 1+a, then the kernel of A — A is precisely
the kernel of the natural map S™'A — A, cf. Exercise Furthermore, for
any a € a, the Cauchy sequence .. ,a’ converges, namely to (1 —a)™?!, so
that every element of S in becomes a unit in A. By the universal property
of localisations there exists a natural morphism S~1A4 — A which is
injective, and S™!A can be identified with a subring of A.

(ii) Krull’s theorem may fail whenever A is not Noetherian. Consider, for instance,
C*(R) (cf. Example[0]88] (iv)). Let m be the maximal ideal of functions which
vanish at the origin. By Taylor’s theorem, m = (x) and N = [\m” consists
of functions whose derivative up to any order vanishes at the origin. Further,
f € C*(R) is annihilated by some element in 1 + a if and only if f vanishes
identically near 0. However, the well-known function e~ 17" lies in N , but
does not vanish for x > 0.

There are two immediate corollaries.

26. Corollary. Let A be a Noetherian integral domain, and a % (1) an ideal of
A = (Na™ = 0. In particular, the a-adic topology on A is Hausdorff.

Proof. Otherwise, there would be zerodivisors. O

27. Corollary. Let A be a Noetherian ring, a an ideal of A contained in J(A),
and M be a finitely generated A-module. Then the a-topology of M is Hausdorff,
i.e. (Ja™M = 0. This applies in particular to the situation of a Noetherian local
ring (A, m) and the m-adic topology on M.

Proof. By Proposition [0}21] we know that any 1+4a, a € a, must be a unit. Therefore
x — (1 + a) - = has trivial kernel. O



ALGEBRAIC GEOMETRY 1 & 2 111

The associated graded ring. Our final goal is to show that the a-adic comple-
tion of a Noetherian ring is again Noetherian.

Let A be a ring and a an ideal of A. We define the associated graded ring by
Grq(A) = (—D a”/a"t!

n=0

(with the convention a® = A). If the underlying ideal a is clear from the context we
also write simply Gr(A). This is indeed a graded ring with multiplication defined
as follows. If z,, € a” whose induced equivalence class in a”/a"*! is denoted by #,,
then Z,,Z, := TymT,. For example, if A is Noetherian, we have a = (x1,...,2,).
Let Z; be the image of z; in a/a?, then Gr(A) = (A/a)[Z1,...,Z,]. Similarly, if M
is an A-module with a-filtration (M), then we define

Gr(M):= P M,/My;1.

n=0

This is a graded Gry(A)-module. We let Gr, (M) = M,/ M 41.

28. Proposition. Let A be a Noetherian ring, and let a be an ideal of A =
(i) Grq(A) is Noetherian;
(i) Gra(A) and Gri(A) are isomorphic as graded rings;
(iii) if M is a finitely generated A-module and (M,,) is a stable a-filtration of M,
then Gr(M) is a finitely generated graded Grq(A)-module.

Proof. (i) We have Gr(A) = (4/a)[Z1,...,%Z,] for A is Noetherian. Since A/a is
Noetherian, Gr(A) is Noetherian by the Hilbert basis theorem.

(i) a/a"*! ~ " /a"*! by Proposition 3[20]

(iii) There exists ng such that M, .; = a’M,,, for all i > 0, so that as an Gr(A)-
module, Gr(M) is generated by P, ,, Grn(M). Furthermore, each Gr, (M) is
Noetherian and annihilated by a, therefore it is a finitely generated A/a-module.
Consequently, P, <,,, GTn(M) is a finitely generated A/a-module. These generators
generate Gr(M) as a Gr(A)-module. O

29. Lemma. Let ¢ : M — M be a module morphism between filtered modules
with ¢(M]) < M, and let G(¢) : Gr(M') — Gr(M) and ¢ : M’ — M be the
induced morphisms of the associated graded and completed groups =

(i) G(@) is injective = ¢ is injective;

(il) G(¢) is surjective = ¢ is surjective.
Proof. This is again a consequence of the Snake Lemma and Proposition 3[T1]
see [AtMal Lemma 10.23]. O

This enables us to prove a kind of converse to item (iii) of the previous Proposition.

30. Proposition. Let A be a ring, a an ideal of A, M an A-module, and (M,)
an a-filtration of M. Suppose that A is complete in the a-topology and that M s
Hausdorff in its filtration topology (i.e. (M, = 0). Suppose also that G(M) is a
finitely generated G(A)-module = M 1is a finitely generated A-module.
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Proof. Let z;, 0 < ¢ < v, x; € M, be the homogeneous components of degree n;
of the finite set of generators of G(M). Let F' = A be the module with stable
a-filtration given by F! = a" ™ and put F = @;_, F* =~ A”. Mapping the
generator 1 € F* to x; defines a morphism ¢ : ' — M of filtered groups (with F), =
@Y_pa" ™), for ¢p(a™ ™) < a® "™ M,, < M,. By design, the induced morphism
of G(A)-modules G(¢) : G(F) — G(M) is surjective. Hence ¢ is surjective by the
lemma. Consider now the diagramm:

F——M
j M
Since F' =~ A" is free and A = A for A is complete it follows that a is an isomor-

phism. Further, § is injective for M is Hausdorff. Now the surjectivity of qAS implies
the surjectivity of ¢, and in particular that M is finitely generated. O

31. Corollary. Under the assumptions of the previous proposition, if G(M) is a
Noetherian G(A)-module = M is a Noetherian A-module.

Proof. We show that every submodule M’ of M is finitely generated. Indeed, let
M) = M' n M,. Then (M’) is an a-filtration of M’, and the inclusion M, — M,
1nduces an injection M) /M, — M,/M,,; and thus an embedding G(M') —
G(M). Since G(M) is Noetherian by assumption, G(M’) is finitely generated.
Further, (Y M}, = (\M,, = 0 so that M’ is Hausdorff. It follows from the previous
proposition that M’ is finitely generated. 0

This finally induces the desired result:

32. Theorem (the a-adic completion of a Noetherian ring is again Noe-
therian). Let A be a Noetherian ring, a an ideal, and A the a-adic completion =
A is Noetherian.

Proof. In general, a ring is Noetherian if and only if it is Noetherian regarded as
a module over itself. We have already seen that Grq(A) = Gr4(A) is Noetherian,
that is, setting M = A and M,, = a”, Gr(M) is a Noetherian Grs(A)-module. Now
A is Hausdorff being a complete space so that ()a™ = (M, = {0}. Applying the
previous corollary gives the result. O

From this and Example 3[7] we get another proof for Exercise [0

33. Corollary. If A is Noetherian, then so is the ring of formal power series
Alzy, ... z,].
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3.2. Dimension. Next we investigate one of the essential notions of geometry: the
dimension. Geometrically, we think of the dimension of a variety as the number
of linearly independent “coordinates” or “degrees of freedom”. However, one can
define dimension in a purely topological context.

34. Definition. If X is a topological space, then we define its dimension dim X
to be the supremum of all integers n such that there exists a chain Zy < Z; <
... < Z, of distinct irreducible closed subsets of X. We define the dimension of a
variety to be its dimension as a topological space. The codimension of Y ¢ X
is defined by codimx ¥ = dim X —dimY. If X = A™ we simply write codimY.

35. Examples. The affine space A}l has dimension 1 (take the chain {0} = A}).
For general topological spaces this notion of dimension can be quite pathological. In
particular, a topological space can be of finite dimension without being Noetherian,
and conversely, a Noetherian space can be of infinite dimension.

(i) C with its standard Euclidean topology has dimension 0 (the only irreducible
sets are points). Of course, C is not Noetherian (consider, for instance, the
sequence of closed balls Z; = {z e C||z]| <1} 222 ={ze€C||z| <1/2} 2
27 4zeCllz|<1/n} 2.

(ii) Consider X = {u, v} a two element set with topology defined by the open sets
&, U = {u} and X. This has dim X = 1 (with Zy = {v} € Z; = X), while
dimU = 0 (with Zy = U — note that U is closed in its subspace topology)
even though U = X, i.e. U is open and dense.

(ili) X = N with closed sets Z,, = {0,...,n}. This is clearly Noetherian. Furthe-
more, the sets Z,, are irreducible, for if Z,, = Yy u Y7 and n € Y), say, then
Yo ={0,...,n} = Z,. Thus there exists an infinite chain Zyp ¢ Z; < .. ..

Dimension is a local notion:

36. Proposition (topological dimension is local) [Hal Exer. 1.1.10 (b)]. If
X is a topological space which is covered by a family of open subsets {U,}ier, then
dim X = sup;e; dim U;.

Proof. Since U; < X we obviously have dimU; < dim X, whence sup;c; dimU; <
dim X. Conversely, let Zy & ... & Z, be a chain of closed, irreducible subsets of X.
Let U = U; be an open set of the family such that Zop nU £ J (such an ¢ obviously
exists, for the family {U;} covers X). In particular, V; := Z; nU + J so that by
Proposition V; is an open, dense, irreducible subset of Z;. If V; = V;,1, then
V; = Z;j = Vj41 = Z;41 which is impossible, so that we get a chain Vo & ... SV,
of closed sets in U. Since the subspace topology of V; via the inclusion U < X and
Z; < X coincides, Vj is also irreducible in U, whence n < dimU < sup,¢; dim U;.
Since the chain was arbitrary, dim X < sup;.; dim U;. g

37. Exercise (dimension of closed subspaces). If X is a finite dimensional
irreducible topological space, andY < X is closed with dimY =dim X = Y = X.

Proof. Since Y is finite dimensional, there exists a chain Zy < ... & Z,, of closed
irreducible subsets of Y with n = dimY. If Y € X we could add X to this chain
and conclude that dim X > dimY. O
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Next we come to the algebraic description of dimension.

38. Definition (height of a prime ideal and dimension of a ring). The
codimension or height of a prime ideal p in A is the supremum of lengths of
strict chains of prime ideals pg € p; < ... < p, = p which end at p. The (Krull)
dimension dim A of A is the supremum of heights of all prime ideals, i.e. lengths
of strict chains of prime ideals po S p1 S ... S Py, i.€.
dimA = sup heightp.
pcA prim

39. Remark.
(i) Note that possibly dim A = c0.
(ii) Since a maximal chain necessarily ends with a maximal ideal we have dim A =
SUPpc 4 max height m.

A field & has obviously dimension 0. More generally, we have

40. Proposition. A ring A is Artinian < A is Noetherian and dim A = 0.

Proof. =) By Exercise an Artinian ring A has necessarily dimension 0. Fur-
thermore, since it has only finitely many maximal ideals by Exercise [O101] it is
enough to show by Remark [IJII7] that every localisation Ay, is Noetherian. Now
An is a local Artinian ring. Consider the direct sum of k& = A/m vector spaces
A > A/m@Pmi/mtl. Since m is nilpotent by Exercise this direct sum is
finite and we conclude that A is Noetherian as a direct sum of Noetherian modules.

<) Since A is Noetherian it has only a finite number of minimal prime ideals over
(0). Since dim A = 0, these must be all maximal. In particular, the nilradical is
the intersection of finitely many maximal ideals m;, and it follows that the product
[Tm? = 0 for some k. As for =) we can consider the chain of ideals A > m; >

my -me O ... D (0) (repeating some maximal ideals if necessary) and the vector
spaces my - ... -m;_1/my - ... - m; to conclude that A is Artinian (cf. also [AtMal,
Corollary 6.11]). O

41. Remark. In particular, we have
field == Artinian == Noetherian

Zero dimensional rings are marked in red. The coordinate ring A(X) of an affine
variety is Artinian if and only if X is a finite collection of points (cf. also [GaCAl
Remark 7.15]).

Here are further examples.

42. Example.
(i) dimk[z] = 1. Indeed, (0) is a prime ideal, and since k[z] is a principal ideal
domain, any non-trivial prime ideal is maximal. More generally, dim A = 1
for any principal ideal domain which are not fields.

(ii) It follows that dimZ = 1 but dim@Q = 0. In particular, we cannot conclude
dim A < dim B for A < B.
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(iii) The dimension of a point a € Al is obviously 0 so that its codimension is 1.
On the other hand, the height of its associated maximal ideal (z — a) in k[x]
also equals 1.

(iv) By Exercise and the fact that A, is a local ring with unique maximal
ideal p°® (the extension given with respect to the localisation map A — A,),
cf. Proposition

height p = dim A, = height p°.

Geometrically, this is just the codimension of the affine variety Z(p) < Spec A
as we will see below.

(v) Again, finite dimension of a ring is not related to A being Noetherian or not.
Indeed, an example of a Noetherian ring of infinite dimension is for instance
given in [Rel Section 9.4 (3)], while an example of a ring of finite dimension
which is not Noetherian is given by an infinite direct product of fields. This
defines a ring which is not Noetherian, though one can show that it is of Krull
dimension 0.s

43. Proposition (algebraic dimension is “local”) [GaCAl 11.5.c].  The
dimension is local in the sense that

dimA = sup dimA, = sup height p
pcA prime pcA maximal
= sup dim A, = sup height m
mcA maximal mcA maximal

(this is the algebraic statement corresponding to Proposition 3@)

Proof. Exercise shows that heightp = height p¢ (recall that for a general
prime ideal p, Spec A, = {q € Spec A | q < p}). Since dim A is the supremum over
all heights, the result follows from Example 342 O

The first item of Example 3[42] shows that the Krull dimension of k[z] equals its
topological dimension. This is not an accident, and we are going to make contact
with geometry next.

44. Proposition (algebraic and toplogical dimension) [Hal 1.1.7]. If X < A"
is an affine algebraic set, then the (topological) dimension of X equals the (Krull)
dimension of its affine coordinate ring A(X).

Proof. The prime ideals in A(X) = A[n]/Z(X) correspond to prime ideals in A[n]
which contain Z(X), that is, to closed irreducible subsets of X, cf. Exercise
Hence the longest strict chain of closed irreducible subsets of X corresponds to the
longest strict chain of prime ideals in A(X). O

While this definition of the dimension of a ring easily relates to its toplogical coun-
terpart, the actual computation of dimension is difficult. One of the reasons is that
different maximal chains can have different lengths.

45. Example. Consider the affine variety X = Z(xi23,2223) = Z(21,22) U
Z(x3) = A3 which is the union of the xjzp-plane Z(z3) and the z3-line X3 :=
Z(x1,22) (note that Z(x1,x3) and Z(x2,x3) are contained in Z(x3)). Here, the
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dimension is 2 though the chain p = Z(X3) = (23) < m(0,1) = Z({(0,0,1)}) is
maximal — the z3-axis defines a lower dimensional stratum, see Figure 317 below.

o

/
Y
Y

FiGURE 17. Different chains of prime ideals in X

46. Exercise (height and number of generators) [Hal, 1.1.11]. Let X < A}
be the curve given by the set {(t3,t4,t%) | t € k}. Show that Z(X) is a prime ideal
of height 2 in k[x,y, z] which cannot be generated by 2 elements.

Remark: One says that X is not a local complete intersection, cf. Exercise 3[72]
The goal of this subsection is to show the following

47. Theorem [Hal I.1.8A]. Let k be a field, and A a finitely generated k-algebra
which is an integral domain. Then

(i) the dimension of A is equal to the transcendence degree of the field extension
k < Quot A (cf. Definition [B|11]):
dim A = trdeg;, Quot A.

(ii) for any prime ideal p = A, we have

heightp + dim A/p = dim A, + dim A/p = dim A. (6)

48. Remark. One part of @ is easy and holds in general. Let p € A be a prime
ideal, and let n := dim A/p, m = heightp = dim A,. Hence there are chains of
prime ideals po & ... S pp =pand p=qo & ... & q, in A which give a chain of
prime ideals of length m + n. Therefore,

dim A > n 4+ m = dim A/p + height p.

Note, however, that unless A is integral, this inequality is strict in general. An
easy example can be obtained by geometric reasoning, cf. Example 3[45] The point
a = (0,0,1) € X gives rise to the maximal ideal m, in the two dimensional ring
A(X). However, a is also in X3 which is irreducible so that Z(X3) < m, is a
maximal chain ending at m, (where by abuse of notation, we denote by Z(X3)
also the ideal of functions in A(X) vanishing on X3). Since A(X) is not integral,
(0) is not a prime ideal, hence the height of m, = 1. As a field A(X)/m, is zero
dimensional, whence 2 = dim A(X) > dim A(X)/m, + height m, = 1.
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49. Example. The geometric idea underlying Theorem 3[47] becomes clear if we
consider the special case of A = A[n] = k[x1,...,2,]. Then Quot A = k(z1,...,2,)
whose transcendence degree is n. In this way, the dimension becomes the maximal
number of algebraically independent generating functions — the common idea of
dimension as the number of degrees of freedom.

50. Corollary (dimension of affine varieties) [Ha, 1.1.9]. The dimension of
A™ is n. Further, if X = Z(p) < A™ is any affine variety defined by the prime ideal
p, then

codim X = height p.

Proof. The transcendence degree of Quot A(A"™) = k(z1,...,x,) is just n which by

the previous theorem equals the dimension of A(A™) = k[z1,...,z,]. By Proposi-
tion 3[44] this is the dimension of A™. Next heightp = dim A" — dim X = codim X
for p = Z(X) and dim A(X) = dim A[n]/Z(X). O

51. Corollary (dimension of projective varieties) [Hal Exer. 1.2.6].  If
X is a projective variety with homogeneous coordinate ring S(X), then dim X =
dim S(X) — 1. In particular, dimP" = n.

Proof. We consider the standard affine covering U; of P™ together with the maps
i U; > A", Let X; = X nU; and assume X; + ¢J. Since the localisation S(X),,

is generated by polynomials of the form f/z¢, we have S(X),, = S(X) @, [®i, ;']
(recall that S(X)(g,) is the degree 0 part of S(X),,, cf. Paragraph [1§155). Thus,

by Lemma we have
S(X)a, = Alwi(X))[wi, 27 '].
On the other hand, S(X) and S(X),, are integral domains, whence Quot S(X) =
Quot S(X),, = Quot A(¢;(X;))(z;) and therefore
dim S(X) = dim S(X),, = dim A(p;(X;)) + 1 =dim X; + 1
by Theorem 3 It follows that either X; = &, or dim X; = dim S(X) — 1. By
Proposition 3[36} dim X = dim X; = dim S(X) — 1 for the X; + & cover X. O

52. Corollary [Hal Exer. 1.3.12]. If X is a variety and a € X, then dimOx , =
dim X. In particular, dimension is a birational invariant.

Proof. First assume that X is affine. Then Ox,, = A(X)n, is a local ring with
maximal ideal m¢ its dimension equals height m$ = height m,. Therefore

dim Ox,, = height m, = dim A(X) — dim A/m, = dim A(X) = dim X,
for A/m, is a field, hence 0-dimensional.

If X is projective consider X; = X n U; for the open cover U; of P". By the proof
of Corollary 3.77 we know that dim X; = dim X unless X; = J. Since the X; are
affine taking an ¢ with a € X; reduces the assertion to the affine case. (]

53. Remark. Since the stalk Ox , is determined by any open set containing a,
we see that dim U = dim X for any open subset U of a variety X.

54. Exercise (dimension of the twisted cubic curve) [Hal 1.1.2]. Let X be
the twisted cubic curve X < A3 given as a set by X = {(t,t*,t3) | t € k}. Show
that dim X = 1.
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Next we start with the preparations of the proof of Theorem 347 If we assume that
all maximal chains have the same length (cf. Example 3 the situation becomes
particularly nice:

55. Lemma (dimension of localisations) [GaCAl 11.6]. Let A be a ring of
finite dimension so that all maximal chains of prime ideals have the same length.
Let p < A be a prime ideal. Then

(i) the quotient ring A/p has also finite dimension, and all maximal chains of
prime ideals have the same length;
(ii) dim A = dim A/p + height p;
(iii) dim A, = dim A if p is mazimal.

56. Example. In particular, these assumptions are satisfied for the polynomial
ring A = k[z1,...,z,] as we will see in Lemma 3

Proof. The prime ideals in the integral domain A/p correspond to prime ideals
in A which contain p. In particular, any increasing chain of prime ideals in A/p
corresponds to a chain of prime ideals in A. Since dim A < oo, the length of
this chain is bounded, and so is its image in A/p, the original chain we started
with. Now if the chain p; in A/p is maximal it necessarily starts at the prime
ideal (0), hence the lifted chain q9 & ... & ¢, in A starts at p, i.e. qo = p.
Completing ¢; into a maximal chain t¢ € ... S t,, = P S q1...q, shows that
dim A = m + n, heightp > m and dim A/p > n. However, by Remark 3 we
have dim A > dim A/p + heightp > dim A. Hence we have equality. Finally, if p is
maximal, then dim A = height p which equals dim A, by Example 3 (]

57. Remark. As for completion one can show that if (A4, m) is a local Noetherian
ring, then for its m-adic completion A we have dim A = dim A (see [AtMal, Corollary
11.19]). In particular, it follows from Corollary 3)52| that if a € X and b € Y are
two analytically isomorphic points (cf. Definition of two varieties X and Y =
dim X =dimY.

We are now in a position to prove rigourosly what we have already pointed out in
Remark namely, that the number of algebraically independent elements of a
finitely generated k-algebra B equals just its dimension, cf. Noether’s normalisation
lemma Theorem This follows immediately from two further lemmata:

58. Lemma (invariance of dimension under integral ring extension). For
any integral ring extension A € B we have dim B = dim A.

Proof. dim A < dim B: Let pg & ... & p,, be a strict chain of prime ideals in A.
By lying over for pg (cf. Theorem [226]) and successive application of going-up for
p1,-..,pn (cf. Theorem [2}27)) we obtain a strict chain of prime ideals in B.

dim A > dim B: Conversely, let qo & ... & g, be a strict chain of prime ideals
in B. Contraction with A yields a chain of prime ideals in A which is strict by
incompatibility (cf. Remark [2)i31)). d

Geometrically, this means that for any affine variety there exists a map X — A"
with finite fibers and such that n = dim X.

59. Lemma (dimension of polynomial rings) [GaCAl 11.9]. Let k be a (not
necessarily algebraically) closed field, and let n e N =
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(i) dimk[zq,...,z,] = n;
(ii) all mazimal chains of prime ideals in k[x1,...,x,] have length n.

Proof. We prove both statements by induction on n. The cases n = 0 and n =1
are easy and were discussed above.

Solet n >2andlet o & ... S sy be a strict chain of prime ideals in k[x1, ..., 2,].
We wish to show that m < n with equality < the chain is maximal. Without loss
of generality we can assume by asserting additional prime ideals if necessary that

(i) g0 = (0);

(ii) g1 = (f) for f € k[z1,...,x,] irreducible by taking ¢; to be a minimal prime
over (0) (q1 must have at least one irreducible generator which we can take
as f — k[x1,...,x,] is factorial!);

(iii) ¢y, is maximal.

As in the proof of Noether Normalisation we may assume, by linearly transforming

the coordinates x1, ..., x, if necessary, that f € k[z1,...,z,—1][zy] is monic in x,,.
It follows that the ring extension

klz1,...,xn-1] = k[z1, ... 2n_1][zn])/(f) = k[z1, ... 20]/0 (7)
is integral by Proposition[2Jf] We can now push down the strict chain g1 < ... < gy,
of k[z1,...,x,] toachainp; = (0) & ... & ppm in k[z1,...,2,_1] by first extending
qi, © = 1 via the projection map k[x1,...,2,] — k[z1,...,2,]/91. In particular,

this maps q1 to (0), g2 to q2/q1 etc. Second, we contract with respect to the integral
ring extension . This chain is strict by incompatibility, cf. Remark [231] It is also
maximal if the chain g; is maximal, for p,, is maximal by CorollaryE% (i). If we
could insert some prime ideal p into the chain p; this would be covered by a prime
ideal q by [GaCAl Exercise 10.8] strictly extending the chain g; in contradiction to
its maximality.

By induction hypothesis, the length of the chain p;, which is m —1is < n —1
with equality < the chain is maximal. Hence m < n with equality < the chain is
maximal. (]

60. Corollary [GaCAl 11.12].  Any finitely generated k-algebra A is of finite
dimension (compare this with the case of Noetherian rings!). Furthermore, if A is
integral =

(i) every mazimal chain of prime ideals in A has length dim A;
(ii) for any prime ideal p of A, dim A = dim A/p + height p. In particular, this
proves (ii) of Theorem 3[{7

Proof. By Noether Normalisation we know that A is a finite, hence an integral

extension of k[x1,...,x,] for some n so that dim A = n. Furthermore, if A is
integral = A = k[x1,...,2:,]/q for some m and q prime. Hence we can apply
Lemma 355 O

61. Example. Let X be an affine variety = the localisations A(X)y, all have
the same dimension dim A(X),, = height m. Moreover, let Y be a subvariety of
X. Hence Y corresponds to some prime ideal p in A(X), and A(Y) = A(X)/p.
Therefore, dimY = dim X — heightp so that dim X = dimY + codimY as one
would expect from any reasonable definition of dimension.

Next we prove part (i) of Theorem 3[4}
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Proof. (of Theorem 3. By Noether Normalisation we have a finite ring extension
k[z1,...,2,] € Awithn = dim A. In particular, the field extension k(z1,...,2,) <
Quot A is algebraic. Indeed, any given a, b € A are integral over k[x1,...,x,] and
thus algebraic over k(z1,...,z,). It follows that k(z1,...,z,) < k(z1,...,2,)(a,b)
must be an algebraic (in fact finite) field extension. In particular, a/b is algebraic
over k(zy,...,2,) (algebraic numbers form a field). Therefore, trdeg; Quot A =
trdegyk(x1,...,2n) =n = dim A. O

Finally, we want to study the minimal number of generators of a prime ideal, and
how this relates to its height. If p corresponds to an affine variety X < A" we
would expect that height p equals the codimension of X which, on the other hand,
should equal the minimal number of equations one needs to define X. This will be
indeed the case (at least for hypersurfaces) as shown by Proposition 3 which will
be a consequence of Krull’s theorem 363

For the next lemma recall that an ideal q is called primary if a-b € q implies a € q
or be/q. If \/q = p, then q is called p-primary. This is the smallest prime ideal
containing ¢, see Proposition and Definition

62. Lemma [GaCAl 11.14]. Let p be a prime ideal in A. For n € N consider the
so-called n-th symbolic power of p, namely

p™ = {ae A | abep” for some be A\p}.

Then

(i) p" < p™ < p and p+D) < pt);
(ii) p(™ is p-primary;

(iii) p(MA, = prA,.

Proof. (i) The inclusion p” < p™ follows from taking b = 1. Next, let a € p(™).
If ab € p™ < p, then a € p for p is prime. Finally, the inclusion p**tD < p(™ is
obvious.

(ii) From (i) it follows that 4/p(™ = p = /p™. It remains to show that p(™ is
primary. So let ab € p("™) | that is, abc € p” for some c € A\p. If b¢ 4/p(W) = p, then
be ¢ p, thus a € p(™) by the definition of p(™).

(iii) From (i) the inclusion p”A, = p(™ A, is obvious. So let a/s € p(™ A,, where
aep®™ and s € Sp = A\p. There exists b € S, such that ab € p”, whence
a/s = ab/cb e p" A,. O

63. Theorem (Krull’s principal ideal theorem) [GaCAl 11.15]. Let A be a
Noetherian ring, and let a € A. Then every minimal prime ideal p over (a) satisfies
heightp < 1.

Proof. We may assume that (a) is not prime and that height p > 0 for otherwise the
assertion is trivial. Let ¢ < q S p be a chain of prime ideals. We have to show that
q’ = q. By the usual properties of the spectrum of rings we may first pass to the
quotient A/q and then localise with respect to the extension p¢. This reduces the
assertion to the following statement: Consider an integral local ring (A, m) where
m is a minimal prime over a € A. If there is a prime ideal g S m = q = 0.

Step 1. We show that ¢ < q*Y 4 (a) for some n. As a quotient ring of
A, A/(a) is Noetherian. Further, dim A/(a) = 0 for m® is a minimal prime over
(0) € A/(a). It follows that A is Artinian (cf. Example 3 (i)). In particular, the
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descending chain (q(©) + (a))/(a) 2 (¢ + (a))/(a) 2 ... of ideals in A/(a) becomes
stationary. Hence q(™ < q™ + (a) = q"*V) + (a) for some n.

Step 2. q™ = q*1) 4 mq(™). Only the inclusion c requires proof. So let b q(").
By the first step, b = ¢ + ar for some ¢ € q"t1) < ¢(™ and r € A. Tt follows that
ar = b—q € q™ so that there exists ¢ € A\q with car € q*. But a ¢ q¢  m for
m was a minimal prime, whence ac ¢ q and therefore r € (™). Hence b = ¢ + ar €
g+ 4 mg(™).

Step 3. Conclusion of the proof. Passing to the quotient in Step 2 gives q(™) /q(*+1) =
mq(™ /q(»+1) . Since the modules are finitely generated this implies q(™ /q(**D =0
by Nakayama’s 1emma Hence g™ = q(**1 5o that by Lemma 3 q(”)Aq =
gtV A, = (q44)q™M A,. Since gA, = q° is the maximal ideal of the local ring 2,
Nakayama’s lemma implies again q(™ A, = (0). Since the localisation map A — A,
is injective (A is integral) this can only happen if ") = q® = 0. But this implies
q = 0 again by integrality of A.

O

64. Exercise [GaCAl 11.16]. Letn # 2 and po S p1 S ... S Pn be a chain of
prime ideals in a Noetherian ring A. If a € p, = there exists a chain of prime
ideals po S PL S ... S P, _1 S P with a € p}.

Proof. We proceed by induction. Let n = 2 and consider the strict chain py < p1 &
po = p. In particular, heightp > 2. The assertion is trivial if a € pg, so assume
otherwise. Then 0 + @ € p/po = A/po which is an integral ring. Let q < p/po
be a minimal prime in A/pg containing a (existence of q essentially follows from
Exercise . If ¢ = p/po, then p would be minimal over a in A. By Krull’s
theorem 363 we would have heightp < 1, a contradiction. Hence pg S (po,a) S
q° < p so that p} = q° does the job.

Next let n > 3 and assume the assertion to be true for n —1. Given the strict chain
PoSP1 S ... S Py =P we apply the induction hypothesis to p;, ¢ = 1. This yields
a chain po S p1 S Py, S ... S p,,_1 S py with a € p,. Applying now the first step
to the sequence pg S p1 S Py gives po S p) S ph with a € pj. O

The following corollary gives a handy criterion for when equality holds in Theo-

rem 363t

65. Corollary [GaCAl 11.19]. If A is a Noetherian ring and a € A is not a
zerodivisor = heightp = 1 for every minimal prime p containing (a).

Proof. By Theorem [IJ[126] we know that the minimal primes p; over the zero ideal
(0) are of the form +/0 : b; for some b; € A (the radical of the annihilator of (b;)). If
a € p; for some i = there exists a (minimal) € N such that a"b; = a(a""1b;) = 0.
Since a is not a zerodivisor we have a”"~'b; = 0 in contradiction to the minimality
of r. So a ¢ p; for all 5. But a € p so that p is not minimal over 0. It therefore
strictly contains a prime ideal p, & p. Hence heightp > 1. Since < 1 by Krull’s
theorem 3[63] we have equality. O
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66. Example. Consider X4+ = Z(2? + y* £ 1) = AZ. Since the ideal py =
(22 + 32 £ 1) is prime, we have

dim A(X4) = dimR[z,y] — heightpy =2—-1=1

where a part from the previous Corollary we also used Lemmata 3.[55and [59] Note,
however, that Z(p;) = & which shows again that doing algebraic geometry over
nonalgebraically closed field can lead to surprising phenomena.

Geometrically, the previous result means that any irreducible component of Z(g),
g € k[z1,...,z,] has codimension 1, for p = (f) = Z(X) is a prime ideal in the
UFD A[n] if f is irreducible. Hence height p = codim Z(f) = 1. The converse is
also true. Indeed, we have the

67. Proposition [Hal 1.1.13]. An affine variety X < A™ has dimension n — 1 <
X = Z(f) for some nonconstant, irreducible polynomial in A[n] = k[z1,...,z,].

Proof. We only need to prove =). We use the following classical fact from com-
mutative algebra: A noetherian integral domain A is a UFD < every prime ideal
of height 1 is principal (see for instance [Mal Theorem 20.1]). Since p = Z(X)
has height = codim X = 1, p = (f) is prinicpal. Since A[n] is a UFD, f must be
irreducible. O

More generally, we have the

68. Corollary [GaCAl 11.17]. Let A be a Noetherian ring, and let ay,...,an, €
A. Then every minimal prime ideal p over (ai,...,ay) (in particular, if p =
(a1, ...,ay) is prime) satisfies height p < n.

Proof. We proceed by induction over n. For n = 1 the assertion reduces to Theo-
rem 3[63] For n > 2let po & ... S p,, = p be a strict chain of prime ideals ending
at p. By Exercise 3[64 we may assume that a,, € p; up to changing the ideals
P1,-..,Pm. The extended sequence p1 < ... & P, in the Noetherian ring A/(a,)
has length m — 1, and p,, is minimal over (a;,...,d,—1) in A/(a,). By induction
hypothesis it follows that m — 1 < height p,,, < n — 1 which implies that m < n.
Since the initial sequence p; was arbitrary this implies height p < n. O

69. Remark. If A = A(X) is the coordinate ring of an algebraic set X < A"
with Z(X) = (f1,..., fr), then the irreducible components of X correspond to the
minimal primes containing (fi,..., fr). It follows from Corollary 3 that the
codimension of these irreducible components is at most r, that is, their dimension
is at least n — r. As Exercise 3[46] shows that strict inequality can occur.

70. Exercise (intersection with hypersurfaces) [Hal 1.1.8]. Let X < A"
be an affine variety of dimension r. Further, let H < A™ be a hypersurface (i.e.
codim H = 1) such that X is not contained in H = Every irreducible component
of X n H has dimension r — 1.

71. Exercise (hypersurfaces in P") [Ha, 1.2.8]. A projective variety X <
P™ is a hypersurface (i.e. codimX = 1) & X = Z(f) where f is an irreducible
homogeneous polynomial of positive degree.

72. Exercise (complete intersections) [Ha, 1.2.17 (a) and (b)]. A wvariety
X < P™ of dimension r is a complete intersection if Z(X) can be generated by
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n—r elements. X is a set theoretic complete intersection if X can be written
as the intersection of n — r hypersurfaces.
(i) Let X = Z(a) < P™, and suppose that a can be generated by q elements =
dimX =>n—gq.
(ii) Show that a strict complete intersection is a set theoretic complete intersection.

Remark: The converse is false, that is, there a set theoretic complete intersections
which are not complete intersections, see for instance [Hal, 1.2.17 (c)]

3.3. Smoothness. The notion of smoothness is modelled on the corresponding no-
tion of differentiable manifolds. It will also provide us with yet another (geometric)
way to express the dimension of a variety.

73. Construction (tangent spaces). Let X < A™ be an affine variety,
Al[n] = k[z1,...,2,], and let a = (a1,...,a,) € X. Consider the linear change
of coordinates y; := x; — a; for which a becomes the origin. The formal differential
map is defined by

n 0
d:k[xla"'7xn]—>k|:y17"'7yn]? daf:Z f(a)yia
i=1 """

— Ox;
where ¢f/0x; denotes the formal derivative of the polynomial f. In this way we
can think of df as the linearisation of f. We can regard d, f as a linear function on
A} sending b = (by,...,b,) to >, 0;f(a)b;, i.e. dof € k™. We define the tangent
space of X at a by
T,X = Z{dof | feI(X)}) c k™.

Here we write k™ since we think of a as specifying a prefered origin of A}}. Note in
passing that the annihilator of T, X < k™, namely NVT, X = {\ € k" | A1, x =
0} < k™Y is just

NYT,X ={dof | f € Z(X)} (8)
so that T,X = Z(NVT,X). The inclusion > is clear. On the other hand, let
dimg{d.f | f € Z(X)} = r. Then dim;T,X = n — r whence dimy NVT,X = r.
Since both vector spaces have the same dimension, they must be equal.

74. Remark.
(i) One immediately verifies the derivation property (“Leibniz rule”), namely

da(fg) = f(a)dag + g(a)da f.
(ii) As the formal differential is a k-linear operator, it is enough to compute df
for a generating system of Z(X). Moreover, T, X is a k-vector space as the
solution of a linear system.

75. Example. Consider X = Z(23 + 25 — 1) < A2, Then f = 23 + 23 — 1
generates Z(X), and do f = 2(a1y1 + azy2) if @ = (a1, a2). In particular, we find for
a = (1,0) that T,X = Z(d.f) = {y1 = 1} in accordance with our intuitive idea of
the tangent space of the circle at a.

In order to define tangent spaces on (abstract) varieties we need an intrinsic, i.e.
coordinatefree description of the tangent space.

76. Proposition [GaCAl 11.34]. Let X < A™ be an affine variety, and let a € X.
If I(X) < m, is the maximal ideal of a in A(X) = the k-linear map defined by

m, — TavX = Homk(TaX, k‘), f > daf|TaX,
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where f € A(X) denotes the equivalence class of f € k[z1,...,z,] in A(X), induces
an isomorphism
T,XY =m,/m2.

Proof. Since by design, d, f|r,x =0 for f € Z(X) , the map is well-defined. Fur-
thermore, we may assume by choosing the initial coordinates 1, ..., z, accordingly
that a = (0,...,0) € k™ = A}. In particular, y; = z; and m, = (%1,...,3,) in
A(X). Now Z; is sent to dyx;|1, x = 2|1, x. Since any linear functional T,X — k
is a linear combination of the z;|r, x, the map m, — Homy (7, X, k) must be sur-
jective. It remains to show that the kernel equals m2.

m2 < ker: m2 is generated by Z;Z;, so do(Z;%;) = Z;(a)d.T; + T;(a)d,T; = 0.

m2 > ker: For f € m, assume that d,f|r,x = 0 so that d,f € NYT,X. By
there is g € Z(X) such that d,f = d.g, that is, f — g € k[z1,...,2z,] has no linear
term; it has no constant term for f(a) = g(a) = 0. Hence f —g = > a;;T,%; +
higher order terms = f which means that f € m2.

77. Remark. Tangent spaces of affine varieties can be computed from purely
local data. Indeed, let @« € X and consider the local ring (Ox,q,m¢) (cf. Propo-
sition , where m{ is the extension of the corresponding maximal ideal of
a in A(X) under A(X) — A(X)m, = Ox.4. Now T,X =~ (m,/m2)¥ naturally
for T, X is a finite dimensional k¥ = A(X )y, /mé-vector space. Since elements in
Sm, = A(X)\m, are invertible in k, mg/m2 =~ S_1(m,/m2) by Proposition
In turn, the latter module is isomorphic with Sglm,/S;ilm2 =~ m¢/mé. Hence
T,X =~ (m¢/m?)V and we can take this as an intrinsic definition for 7, X on any
(not necessarily affine) variety (restrict to an affine neighbourhood if necessary).

Let us now discuss the algebraic side of smoothness and associate to any Noetherian
local ring (A, m) the finite dimensional k¥ = A/m-vector space m/m?. We want to
compare its dimension with the dimension of the ring.

78. Proposition [GaCAl 11.36]. Let (A,m) be a local Noetherian ring, and let
k= A/m.
(i) The number dimy, m/m? is the minimal number of generators for the ideal m.
(i) dim A < dimg m/m? < co.

Proof. Since A is Noetherian, there is a finite minimal number n of generators of
m.

(i) Let m = (x1,...,2,). Then the ¥; generate m/m? as a k vector space so that
n = N := dimpm/m2?. If Z1,...,%Z, were linearly dependent, then after relabel-
ing, 1,...,Z,_1 would still generate m/m? which by the Corollary to Nakayama’s
lemma (with M = m) would imply that m is generated as an A-module by
T1,...,Tn_1, in contradiction to the minimality of n. Hence n = N.

(ii) By Corollary 368 we know that dim A = dim Ay, = height m < n. O

79. Example. Consider the irreducible curves X; = Z(y — 2?) and X5 = Z(y? —
22 — 2%) in A%, For the tangent spaces at the origin we find the one dimensional
space To X1 = Z(y) (the z-axis) and Ty Xs = Z(0) = A2. Geometrically, we have
two tangent lines y = £z (cf. also Example 3[4]) which span k2 =~ A2. Of course,
the point 0 € X5 in Figure 3[I§ looks singular in a way to be made precise in a

moment which is why we find a dimension bigger than expected.
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FI1GURE 18. The tangent spaces of X; and X5 at the origin 0.

80. Definition (regular local rings). A Noetherian local ring (A4, m) with
residue field k = A/m is called regular if dim A = dimy m/m?.

81. Example. Since a field (k, (0)) is zero dimensional it is always regular.

We have seen that X = Z(xy) = A? is singular at the origin which is reflected in
the fact that the coordinate ring of X is not integral. It is therefore geometrically
compelling that regular local rings are integral.

82. Proposition (regular implies integral) [GaCAl 11.40]. A regular ring is
an integral domain.

Proof. Let (A,m) be a regular local ring with residue field k£ = A/m. We will prove
the result by induction on n = dimg m/m? = dim A.

For n = 0 we have m = m? which by Nakayama’s lemma implies m = 0. Since A\m
consists precisely of the invertible elements by Proposition A must be a field
and is therefore integral.

Let now n > 1, and let p; be the minimal primes over (0). Since dimA > 1 it
follows that either m is minimal which implies that (0) is prime, i.e. A is integral,
or m strictly contains these p;. Assume the latter. We will now proceed in several
steps.

Step 1. We can find an element a € m not contained in m? nor in p;. If not, then
m is contained in m? U | Jp;. It follows m = m? from Proposition [024] (i), hence
m = m?. By Nakayama’s lemma, m = 0 and dim A = 0, contradiction.

Step 2. The Noetherian local ring (A/(a),m/(a)) is reqular of dimension n—1. In-

deed, since a ¢ m? we can extend @ € m/m? to a basis (a, as, . . ., a,) of m/m2. Hence
(as,...,a,) generate the k-vector space V = m/(a)/m?/(a) so that dim;, V < n—1.
On the other hand, let qp £ ... £ m be a maximal chain of prime ideals. It

must necessarily start with a minimal prime ideal qo = p;. Since a € m we can
arrange the prime ideals in such a way that a € qi, cf. Exercise 3[64 There-
fore, q1/(a) < q2/(a) < ... & m/(a) is a chain of prime ideals in A/(a), whence
dim A/(a) = n — 1. Since dimy V > dim A/(a) by Proposition 3[78 we conclude
that dim A/(a) = dimy V, that is, A/(a) is regular.
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Step 3. Conclusion by induction. From the induction hypothesis we conclude that
A/(a) is an integral domain. In particular, (a) is a prime ideal. Hence we must
have p; < (a) for some ideal, that is, any b € p; is of the form b = ac for ¢ € A. Since
a ¢ p and p; is prime, we have c € p;, therefore b € mp;. It follows that p; = mp, for
the finitely generated A-module p,;. By Nakayama, p; = (0) which means that (0)
is prime, hence A is integral.

O

Finally, we discuss the completion of regular ring.

83. Proposition (completion of regular rings) [AtMal Proposition 11.24]. Let
(A, m) be a local Noetherian ring. Then (A,m) is regular < the m-adic completion
(A, m) is regular.

Proof. By Corollary 3 and Theorem 3 we know that (A, m) is a local Noetherin
ring. Furthermore, dim A = dim A by Remark 3 Since Gry(A) =~ Grg(A) by
Proposition 3[28] the result follows. O

In fact, for the case of a k-algebra A the completion is already completely deter-
mined:

84. Theorem (Cohen Structure Theorem). If (A,m) is a complete regular
local ring of dimension n containing some field, then A =~ k[x1,...,x,], the ring
of formal power series over the residue field k = A/m of A.

Proof. See for instance [Mal Section 29, in particular Theorem 29.8]. g

To make contact with geometry again we introduce the notion of smoothness.

85. Definition (smooth affine varieties). Let X — A" be an affine variety,
and let Z(X) = (f1, ..., fr). We say that X is smooth at a € X if the rank of the
Jacobian matrix Jo(f;) := (0:fj(a)) is n — dim X. Otherwise, X is singular at a.
X is smooth if it is smooth at all points, and singular otherwise.

86. Remark. Sinceker J,(f;) = T,X = (m,/m?2) and dimm,/m?+rk J,(f;) = n,
it follows from Theorem 3[47 (ii) and Proposition 3[78| that dim X + rk Jo(f;) =
dim Ox q + 1k Jo(f;) < n so that a is smooth < the rank of J,(f;) is maximal (cf.
with the implicit function theorem!).

87. Example. In Example 3[79] 0 € X; is smooth while 0 € X is singular.

A priori, smoothness seems to depend on the generators of Z(X). However, it is an
intrinsic property:

88. Proposition [GaCAl 11.39]. a € X < A" is smooth < a is regular, i.e.
(Ox 4, mE), the local Ting of the point a € X, is regular.

Proof. a is regular < dim Ox , = dimm¢/(m¢)? = dim 7, X. On the other hand, a
is smooth <& dim 7, X +n—dim X = n, i.e. dim7,X = dim X. Sincedim X = Ox,
by Theorem 3[47 (ii), the equivalence follows. O
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For instance, the localisation of A = k[x1,...,2,] at any maximal ideal is a regular
ring, and so is its completion by Proposition 383 which by Cohen’s Structure
Theorem 3 is just k[z1,...,2,] for n = dim X. Morally, this says that a variety
is smooth in the algebraic sense if it smooth in the differential geometric sense.
Moreover, this also implies that two smooth points of two varieties of the same
dimension are actually analytically isomorphic (cf. Definition 3. This corresponds
to the fact that two smooth manifolds of the same dimension have diffeomorphic
neighbourhoods.

89. Exercise (analytically equivalent neighbourhoods). If X and Y are
two varieties of same dimension, then any two points a € X and b € Y which are
smooth are analytically equivalent.

Proof. By assumption, the local Notherian rings Ox , and Oy, are regular, and
dim Ox , = dim Oy, (Corollary 3/52)). Their completions are again local (Corol-
lary 37 regular (Proposition 3]83) and of same dimension (Remark 3 Hence
by Theorem 3[84] they are isomorphic. O

90. Exercise (Multiplicities) [Hal 5.1 (b), (d) and 5.3]. Let X < A? be the curve
defined by the equation f(z1,22) = 0. Let a = (a1,az) € A%2. Choose coordinates
(y1,y2) of A% for which a is the origin. Then write f(y1,y2) = >, fi(y1,y2) where f;
is the homogeneous component of degree i of f. We define u,(X) = multiplicity
of a to be the least degree i for which f; % 0. Show that

(i) ae X © pa(X) > 0;

(ii) a € X is smooth < pg(X) = 1.
Further, compute the singular points and their multiplicity of the following curves:

(i) f(z,y) =2y —2® —y%

(i) fla,y) =a?y+ay® —at -yt

Note that a generic point is actually smooth, as shown by the following

91. Proposition [Hal 1.5.3]. Let X be a variety, and Sing X < X the set of
singular points of X. Then Sing X is a proper closed subset.

Proof. We proceed in two steps.

Step 1. Sing X is closed in X . Since X is quasi-compact, we can cover X by finitely
many open affine sets X; = Z(f1,..., f) € A", see Exercise 3 It is therefore
sufficient to prove that Sing X; is closed. Hence we may assume straightaway that
X is affine. Let d = dimX. The rank of the Jacobian J,(f;) is < n —d and
Sing X is the set of points where the rank is < n — d. But this happens < the
determinant vanishes so that Sing X is the algebraic set defined by the ideal Z(X)
and the determinants of any (n —d) x (n— d)-submatrix of J,(f;), a € X. It follows
that Sing X is closed.

Step 2. Sing X is a proper subset of X. Since birational varieties have biregular
open subsets it is enough to show that Sing X is a proper subset of some open
subset of U where we are free to modify X birationally. Hence we may assume that
X is a hypersurface in P" (cf. Proposition , and U is a hypersurface in some
A™. In particular, we boiled the assertion down to show that Sing X is a proper
subset of X if X = Z(f) < A} for an irreducible polynomial f € kf[z1,...,2,].
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Now Sing X is precisely the set of points for which 0, f = 0 for all ¢ = 1,...,n.
Hence SingX = X < 0,,f € Z(X) = (f). But this implies the contradiction
deg f —1 > deg0,,f = degf, unless 0,,f = 0. However, this is impossible if
char k = 0. Hence char k = p for some prime number p. But then 0,, f = 0 implies
that f is a polynomial in z? for all i. Since we can take p-th roots in k, the field
being algebraically closed, f = g? for some polynomial g € k[x1, ..., 2,] (recall that
(a +b)P = aP +bP in k so it is enough to take the p-th roots of the coefficients).
But this contradicts the irreducibility of f. Hence SingX < X.

O

92. Exercise (quasicompactness of spectra) [AtMal 1.17 (v)-(vii)]. This is a
continuation of Ezercise[[30 Recall that for each a € A, the basic open set D, is
the complement of Z(a) in X = Spec A. Show that

(i) X is quasicompact, i.e. every open covering of X has a finite subcovering;
(ii) More generally, D, is quasicompact;
(iii) An open subset U c X is quasicompact < U is a finite union of sets of the
form D,.

Remark: In addition to quasicompact, compact spaces are usually required to be
Hausdorff.

3.4. Geometric application: Smooth curves. Despite being local notions we
can use the theory of dimension and smoothness developed so far to derive a global
classification result.

In the category VAR we would like to classify algebraic varieties up to biregular
maps. This turns out to be too dificult and one settles for the less ambitious
though still very difficult problem of classifiying varities up to birational maps. Put
differently, we want to work in RAT rather than VAR which was one of the main
motivation for the introduction of these category. In particular, we can ask for
(a) the existence of a smooth projective variety in any given birational equivalence
class and (b) to classify those. Though weaker than a complete classification up
to biregular maps this is still a very difficult question which is largely unsettled
in dimension > 3 and leads to the Mori or minimal model programme. However,
it is relatively easy to solve these problems in dimension one, i.e. for curves. The
basic classifying birational invariant of a variety X is its function field K (X) which
is a finitely generated field extension of k (cf. Corollary A function field
of dimension 1 has transcendence degree 1 over k. In the sequel, C' will always
denote a curve, i.e. a variety over k of dimension 1.

93. Theorem. For any one dimensional function field K there exists a unique
smooth projective curve C with Ko = K.

Discrete valuation and Dedekind rings. Before we can investigate smooth
curves more thoroughly we need some further background in commutative alge-
bra, namely Dedekind rings, which are special one dimensional Noetherian integral
domains.

94. Definition (discrete valuation). Let k be a field. A discrete valuation
on k is a surjective group morphism v : k* — Z such that

v(z +y) = min (v(z),v(y)) ifz+y+0.
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It is sometimes convenient to extend the definition of v to all of k by setting
v(0) = +oo (this is consistent with (i) and (ii)).

95. Examples.

(i) Let A be a UFD, k£ = Quot A and p € A a prime. Any element = € k* can
be uniquely (up to units) written as = p®r/q. Then v,(z) := a defines a
valuation. Take, for instance A = Z, k = Q and p € Z any prime number or
A = K[z], k = K(z) and p = f any irreducible polynomial f € K[z].

(ii) The order function on the stalk of meromorphic functions Mx , = Quot Ox 4
of a Riemann surface X which assigns to a germ ¢ € Mx , the order of its
zero or pole at a. In fact, fixing a local coordinate with z(a) = 0 this is
a particular instance of the first example for Ox , is a UFD, and the germ
induced by z is prime.

It follows from the definition of a valuation that v(1) = 0 so that v(z~!) = —v/(z).
In particular, the union of 0 € k and the set {z € k | v(x) > 0} defines a ring, the
so-called waluation ring of v (cf. Definition [2|[15)).

96. Definition (discrete valuation rings). An integral domain A is a discrete
valuation ring if it is the valuation ring of a discrete valuation on k.

97. Example. For the previous example we find for

(i) k=Q: A =7y, the localisation of Z at the prime ideal (p);
(ii) k = K(z): A= K[x]y), the localisation of K[z] at the prime ideal (f).

As follows from Proposition[2[I7)a discrete valuation ring is a local ring. Its maximal
ideal is m = {x € k | v(z) > 0} so that a € A is a unit if and only if v(a) = 0. Tt
follows that v(a) = v(b) for a, b€ A < (a) = (b). Moreover, they are Noetherian:
If a + (0) is any ideal of A, then there is a least integer k such that v(z) = k for
some x € a. Hence y € A with v(y) > k implies v(x~'y) > 0 so that 27!y € A4,
that is, 2|y and thus y € a, in fact a = (x). Therefore, the only ideals in A are of
the form m =m; Dmo o ... with my, = {y € A | v(y) = k} = (=) and v(zy) = k.
In fact, if m = (), we can take z; = z*. It follows that A is Noetherian, but not
Artinian so that dim A > 1. Since m is the only nonzero prime ideal, we actually
have dim A = 1. Summarising, we obtain the

98. Proposition (properties of discrete valuation rings).  Any discrete
valuation ring is

(i) a local ring;
(ii) a Notherian integral domain;
(iii) a normal ring;
(iv)

iv) of dimension 1.

In fact, we can characterise discrete valuation rings as follows:

99. Proposition (characterisation of discrete valuation rings) [AtMal 9.2].
Let (A,m) be a Noetherian local ring and integral domain of dimension 1. Are
equivalent:

(i) A is a discrete valuation ring;
(ii) A is normal;
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(iii) m is a principal ideal;

(iv) A is regular;

(v) every nonzero ideal is a power of m;

(vi) there exists v € A such that every nonzero ideal is of the form (z¥), k = 0.

Proof. We start the proof with the following two observations. Under the assump-
tion of a Noetherian local integral domain of dimension 1, we have:

e Any ideal a #+ (0), (1) is m-primary with m"™ c a for some n > 0. Indeed,
4/a = m by Theorem for m is the only nontrivial prime ideal. Then
use Exercise
e m"t! < m” for all n > 0. Otherwise, m = 0 by Nakayama’s Lemma and
thus dim A = 0.
We now prove the proposition.
(i)=(ii): This is Proposition (iii).
(ii)=(iii): Let 0 & a € m. By the first observation above, m” < (a), m"~! < (a) for
some n. Hence there exists b€ m"~! with b ¢ (a). Let = := a/b € k. Since b ¢ (a),
271 =b/a ¢ A, hence x7 ! is not integral over A for A is normal. But then 7 'm
is not contained in m. Otherwise, A[z~!] would be a submodule of m. Since m
is a finitely generated A-module and A is Noetherian, A[z~!] would be a finitely
generated A-module and thus z~! would be integral by Proposition On the
other hand, bm < m™ < (a) so that z7'm < A, hence x7'm = A by maximality of
m. It follows that m = Az = ().

(iii)=(iv): Since m/m is generated by one element so that dimj m/m? < 1 and thus
=1 for m? + m by the second observation above.

(iv)=(v): Either a = m or m” c a for some nontrivial power of m. Assume
that m™ < a. It follows that the image b of a is a nontrivial proper ideal of the
zero dimensional Noetherian local ring B = A/m™ with maximal ideal n = image
of m (in particular B is an Artinian local ring). Since A is regular, m = (x) is
principal by Corollary and so is therefore n = (Z). Moreover, n is nilpotent by
Exercise [0f100} It follows that n = (0) < b < n for some d. Therefore, there exists
r > 0 such that b = n” but b ¢ n"*! (indeed, if b ¢ n?, then b < n%. If b ¢ n?,
then b < n? etc., and this process stops after a finite number of steps). Hence there
exists y € n with y = az” and y ¢ (z"*!). It follows that a ¢ (%) = n, that is, a is a
unit in B, whence b = B, a contradiction. Hence m"™ = a.

(v)=(vi): By the second observation above, m + m?, hence there exists z € m, but
x ¢ m%. But (x) = m” by assumption, whence r = 1 and thus m = (), m" = (27").
(v)=(vi): We define a discrete valuation as follows. By assumption, m = (z),
and (z") % (2"™!). Consequently, for any nonzero element of a € A there exists
a uniquely determined d such that (a) = (z?). We let v(a) = d € Z and extend
v to Quot A* by v(a/b) = v(a) — v(b). This gives indeed a well defined valuation
(check!). O

100. Definition (Dedekind rings) [AtMal 9.3]. A Dedekind ring is a Noe-
therian normal ring of dimension 1.

101. Corollary. A Noetherian domain A of dimension 1 is a Dedekind ring <
every localisation Ay at a mazimal ideal is a discrete valuation ring.

Proof. By Proposition A is normal < A, is normal. Since A, is of dimension
1 this is equivalent to Ay, being a discrete valuation ring by Theorem 3[99] (]
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102. Examples.

(i) Principal ideal domains A. First, A is Noetherian and of dimension 1, and
so are the localisations A,,. Furthermore, they are also principal. In particu-
lar, the maximal ideal m®¢ is principal, hence Ay, is a discrete valuation ring
according to Theorem 3[99]

(ii) Local rings of regular functions. Let C be an affine curve and let a € C be a
smooth point. Then (O¢, = A(C)m,,M,) is a regular Noetherian local ring
of dimension 1 and thus a discrete valuation ring (in essence, any discrete
valuation ring arises this way, cf. Corollary 3. It follows that if C' is
smooth, then its coordinate ring A(C) is Dedekind. Conversely, a finitely
generated k-algebra A which is Dedeking is the affine coordinate ring of a
smooth affine curve.

Finally, we state without proof:

103. Theorem (Akizuki-Krull) [Hal 1.6.3A]. The integral closure of a Dedekind
ring in a finite extension field of its quotient field is again a Dedekind ring.

Proof. See [Mal, Corollary to Theorem 11.7]. O

104. Example. The ring of integers Oy in an algebraic number field k [AtMal,
9.5]. Recall that an algebraic number field k is a finite field extension Q < k.
Its ring of integers is the integral closure of Z < k. For instance, Ogp;; = Z[i].
Then Oy, is Dedekind for Z  Q is Dedekind (cf. also [GaCAl Proposition 13.5] for
a direct proof).

Summarising we obtained the following notions of rings:

Noether

W

PID ————= Dedekind

DVR normal =—=> integral domain

T~

regular =——= UFD

ﬂ

Noetherian local ring

Rings of dimension 1 are marked in red. The implication regular = UFD is the
Auslander-Buchsbaum theorem, see for instance [Ei, Theorem 19.19].

Abstract nonsingular curves. The idea for the proof of Theorem 3[93]is to
show that there exists an “abstract curve” C with K¢z = K, and then to show that
this abstract curve is actually isomorphic to a projective curve in our sense (this
is similar to solving an elliptic PDE by (a priori singular) distributions, and then
to show that they actually come from smooth functions). Towards that end we
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will consider wvaluations of field extensions k < K, that is, A is a valuation ring
in K such that v(x) = 0 for all x € k*. For instance, the discrete valuation rings
(Oc,a,m,) of smooth points a € C' are valuation rings for k ¢ K = Kc. We let

Cx = {discrete valuation rings of k c K},

where K is a function field of dimension 1.

We want to turn Cx into a geometric object. We topologise Ck as follows. We take
as closed sets (7, finite subsets, and Cx. For U ¢ Cx open we let O(U) := (4o 4
be the regular functions on U (cf. Proposition [IJ05]). Here, f € O(U) is considered
as a function f : U — k by assigning to f(a) the residue class of f inside A,/m,.
By Corollary 3 below, the residue field of A,/m, is isomorphic with k. If f and
g in O(U) define the same function, then f — g € m, for infinitely many a € Cx. It
follows from Lemma 3 that f — ¢ = 0 so that O(U) can be really thought of
as functions on U. In particular, any f € K is a regular function on some open set
U < Ck. The “function field” of Ck (in the sense of Definition [1][68)) is just K. We
now justify the claims we made for the geometric structure of Cx.

105. Lemma [Hal 6.5]. Let K be a function field of dimension one over k, and
let xe K. Then {AeCk | x ¢ A} is a finite set.

106. Example. Let C be a smooth curve. Then {O¢, | a € C} < Ck, where
K = K(C) is the function field. Any rational function ¢ = [U, f] € K(C) is in all
but a finite number of the local rings O¢ 4, namely for the finite number of points

C\U.

Proof. If A € Ck, then A is a valuation ring and therefore local with maximal ideal
ma ={ae A|v(a)>0}. Hence = ¢ A if and only ' € m4, the ideal of nonunits
in A. By letting y = 7! we need to show that if y € K*, then {A € Cx | y € ma}
is a finite set. Since for y € k there is no such A we may straight away assume that
ye K\k.

Consider the subring k[y] K generated by k and y. Since k is algebraically closed,
y is transcendental over k, that is, k[y] is a polynomial ring which is Dedekind as
a principal ideal domain. Moreover, K is a finite field extension of k(y) for it is a
one dimensional function field. Hence B = k[y], the integral closure of k[y] in K,
is also Dedekind by Theorem 3[103] Further, B is a finitely generated k-algebra by
Remark 2J31] (ii). In particular, B = A(C) is the affine coordinate ring of a smooth
curve C. Our goal is to show that if y € my for some A € Cx = A = B, for a
finite number of maximal ideals n of B. In particular, since A is determined by n,
y € my for only finitely many rings A.

Now if y € A for A € Ck, we have k[y] < A, and since A is integrally closed as

a valuation ring we have k[y] = B < A = A. Consider the nontrivial prime ideal
n = my N B of B which must be maximal for dim B = 1. (Otherwise, n = (0)
as a prime ideal, and we get an inclusion of B into the field A/m 4. This means
that for every b + 0 there exists a € A such that b-a = 1 € A/my, ie. ba is
invertible by Proposition Hence a is invertible, contradicting a ¢ m4.) Thus
(B,n) is dominated by the valuation ring (A,m4). On the other hand, (B,n) is
also dominated by (By,n¢) which is a (discrete) valuation ring for B is Dedekind.
But B, = S; !B is dominated by A for z ¢ n = m implies 27! € A. Hence B, = A,
and n® = my (cf. Exercise — it is essentially a reformulation of Theorem .
It follows that since y € B, y € my < A implies A = B, for n maximal and y € n. It
remains to see that only a finite number of n can occur. But y € n means that y € B
considered as a regular function on C, vanishes at the point a € C' corresponding to
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n. Since a nontrivial regular function y only vanishes at a finite number of points,
the result follows. O

In fact, proof gives more: For any y € A\k, A € Cx there exists an affine smooth
curve C' with a point a and a regular function f, such that A ~ B, = O¢, and

fy(a) =0

107. Corollary [Hal 6.6]. Any discrete valuation ring in Cx is isomorphic to the
local ring of a point on some smooth k-affine curve.

For this reason we refer to elements in Cx as points, and write a = a5 € Ck for a
discrete valuation ring A = A, € Cx. Note that Cx contains all the local rings of
any smooth curve with function field K. It follows that Ck is infinite, for we have
the

108. Lemma [Hal, 6.4]. Let X be a quasi-projective variety, and let a, b € X.
Suppose that O, < Oy as subrings of Kx. Then a = b.

Proof. Assume that X < P™ and consider the projective variety obtained by taking
the closure X. We can find a hyperplane H so that a and b are in the affine
variety X\ H so we may assume that X is actually affine. If A = A(X) is the affine
coordinate ring of X we have O, = A, and O, = Ay, for maximal ideals m, and
my in A. But O, < Op implies Ap, < Am, and thus my < m, < A (!), whence
m, = m, by maximality. Therefore a = b from the 1 — 1 correspondence points and
maximal ideals. O

We can now make the

109. Definition (abstract nonsingular curve and their morphisms). Let
K be a function field of dimension 1 over k. An abstract nonsingular curve is
an open subset U c Cx together with the induced topology and sheaf of regular
functions. A morphism ¢ : C — C’ between abstract nonsingular curves is a
continuous mapping such that for every open V. < C’ and f € O(V), foop :
@ (V) — k is regular.

Note that this definition is compatible with the definition of a morphism between
varieties so that we can equally well consider morphisms between a variety and an
abstract nonsingular curve.

110. Proposition [Ha, 6.7]. Every nonsingular quasi-projective curve C with
K(C) = K is isomorphic to an abstract nonsingular curve in Cg .

Proof. We define a map ¢ : C — Ci as follows. Let K = K(C) be the function
field of C over k. We define a morphism ¢ : C — Cx by sending a € C' to its local
ring Oc,q € Ck (this is indeed a discrete valuation ring since C' is smooth). By
Lemma 3[108] this map is injective and therefore defines a bijection onto its image
V c CK.

We show that V is open. Since open sets in Cx are complements of finite sets it
suffices to show that V' contains an open set. Restricting to some affine subset of
C we show that its image under ¢ is open. For simplicity, we assume that C is
itself affine with coordinate ring A(C) whose quotient field is K. Let x1,...,z,
be generators of A(C). The image under ¢ is given by the localisations Ay, (C)
for a € C. In fact, if A € Cx and contains A(C'), then A(C)y, is contained in
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A and thus A(C)m, = A for both are discrete valuation rings and thus maximal
elements (cf. Exercise [2[19). Hence im ¢ consists of rings A € Cx containing A(C).
In particular, this happens precisely if x1,...,2, € A. Hence im¢ = [|V; where
Vi ={A e (Ck | z; € A}. By Lemma 3 V; is the complement of a finite set,
hence open. Consequently, im ¢ is open and V defines an abstract curve.

We show that ¢ is an isomorphism. For any U < C open we have O¢(U) =
Nuec Oc,a by Proposition Since O(Im @) = [ acimpccr A = Nacim o A(C)m,
both C and im ¢ < Ck have the same regular functions. Hence ¢ is an isomorphism.

O

111. Proposition [Hal 6.8]. Let C be an abstract nonsingular curve, a € C, and
Y a k-projective variety. Let ¢ : C\{a} — Y be a morphism. Then there exists a
unique morphism @ : C — Y which extends . In particular, we can extend any
morphism of an abstract singular curve C' to all of Ck.

Proof. Embed Y into some P". Since ¢(C) = @(C\{a}) < ¢(C\{a}) < Y, the
extension of ¢ : C' — P™ considered as a map with values in P”, if it exists, takes
still values in Y. Therefore we may assume straightaway that Y = P*. If U = [ U,
where U; ¢ P" is the natural covering of P by open affine subsets, then we may
assume that ¢(C\{a}) n U + ¢J. Otherwise, ¢(C\{a}) would be contained in the
union of the irreducible hyperplanes H; = Z(x;) =~ P"~! < P". Since C\{a} is
irreducible as an open set of Cx and ¢ is continuous, ¢(C\{a}) is irreducible and
thus contained in one of the hyperplanes so that ¢ : C\{a} — P"~!. Continuing
like this we finally arrive in some P! where ¢(C\{a}) n U # & holds.

Now we define the extension. For each 4, j the quotient x;/x; defines a regular
function on U. Pulling it back to C' we get a regular function on some open subset
which we view as a “rational function” f;; € K. Let v = v, be the valuation of
A = A, € Ck, and let r; = v(fio) € Z. Since x;/x; = (x:/x0)/(x;/x0) We have
v(fij) =1 — 15 = v(fio) — ¥(fjo). Choose k such that rj is minimal among the r;.
Then v(firx) = 0 so that fir € A,. In particular, the f;;, are regular near a. Since
fer =1, o) = (for(0), ..., far(b)) in the coordinates provided by Uy so that we
must define g(a) = [for(a) : ... : far(a)] (recall that f;z(a) is the residue class
of fir € A in the residue field A/m, =~ k). In particular, @ is a morphism for the
generators x;/xy, for the regular functions on Uy, pull back to the regular functions

fir near a, cf. Lemma O

This allows us to prove the central result of this subsection.

112. Theorem [Ha, 6.9]. Let K be a function field of dimension 1 over k =
the abstract nonsingular curve Cx defined above is isomorphic to a nonsingular
projective curve C with K(C) = K.

Proof. Every A € C = Cx has an open neighbourhood isomorphic to an affine va-
riety. By Corollary 3[I07] there exists a smooth affine curve V and b € V such
that A = Oy,. In particular, Ky = Quot Oy, = K, and it follows as in Proposi-
tion 3[T10] that V is isomorphic to some open subset U < Ck.

Since C' is quasi-compact we can cover C' by a finite number of open subset V;
each of which is isomorphic via ¢; to an affine curve Y; < A™. Viewing A™ as a
subset of P™ we can consider their projective closure Y;. By Proposition 3 we
get extensions @; : C — Y;. We consider the map ¢ : C — [[Y;, ¢(a) = [] @:(a)
and let Y be the closure of the image of ¢. This is again a projective variety (it is
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closed in the projective product []Y;) and thus a projective curve (C' is dense in
Y so that they share isomorphic function fields).

We show that ¢ is an isomorphism. First we note that we have a commutative
diagramm of dominant morphisms

¢

_—

c
Ui

< >~<

bi

P,

=

where 7; is projection on the i-th factor. It follows that we habe an inclusion of
local rings

Oy, pi(a) = Ovip(a) = Ocia-

a

Next let b € Y be any point. The local ring Oy, is dominated by some discrete
valuation ring A, € Cx (take for instance the integral closure of Oy, and localise
at a maximal ideal). Then A, = Oy (), whence Oy, = Oy, ,(q) and so b = ¢(a)
by Lemma 3[I08] Since ¢ is injective, ¢ is bijective and induces an isomorphism on
every stalk. It follows that ¢ : C — Y is an isomorphism by Proposition O

Since the two outer ones are isomorphic, ¢f : Oy,pa) = Oc,a are isomorphic.

113. Corollary [Hal, 6.10]. Every abstract nonsingular curve is isomorphic
to a monsingular quasi-projective curve. In particular, any curve is birationally
equivalent to a nonsingular projective curve.

Proof. If C' is any curve with function field K, then C' must be birationally equiv-
alent to Cx which is smooth and projective. O

114. Corollary [Hal 6.12]. The following three categories are equivalent:

(i) Nonsingular projective curves over k and dominant morphisms (i.e. mor-
phisms whose image is dense in the target);
(ii) quasi-projective curves over k and dominant rational maps;
(iii) function fields of dimensions 1 over k, and k-homomorphims (i.e. field mor-
phisms which restrict to the identity on k).

Proof. There is an obvious functor from (i) to (ii). The assignement C' — Kx gives
a functor from (ii) to (iii) which is an equivalence by Corollary It remains
to pass from (iii) to (i). With a given K we associate the abstract curve Cx. Now
if K1 — K5 is a morphism, we have a dominant rational map from a nonsingular
abstract curve C' < Cg, — Cg, which we can extend to a dominant morphism
12 : Cx, — Cxk, by Proposition 3 The uniqueness statement there also implies
that 13 = wa30p12 if we are given a chain of field morphisms K1 — Ko — K3. 0O
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4. SCHEMES

So far we were quite successfully working with the categories VAR and RAT.
However, the theory is not as satisfactory as it might seem at first glance. For
instance, consider the category of affine schemes which we know to be equivalent
to the category of finitely generated integral k-algebras. At the heart of this cor-
respondence was the Nullstellensatz which asserted that affine varieties correspond
to prime ideals. More generally, we could consider algebraic sets and radical ideals
which would give rise to reduced k-algebras. However, the subset of radical ideals
is not closed under natural algebraic operations such as addition corresponding to
the intersection of algebraic sets Of course we could just consider arbitrary
ideals but this entails that we need to give geometric meaning to objects such as
the “double line” Z(2?) <= A2. Doing so leads to a far reaching generalisation of
the concept of variety, namely to the notion of a scheme.

4.1. Schemes and morphisms. As for varieties there are affine and projective
schemes which are the basic instances of schemes.

The spectrum of a ring. Recall from the last paragraph of Section [0] that
to any commutative ring A we associated its spectrum

Spec A = {p < A|p is prime in A}.

Furthermore we defined the closed sets of the Zariski topology as follows, cf.
For each T' < A, let Z(T) < Spec A denote the set of all prime ideals of A which
contain 7. Then we have:

(i) If a is the ideal generated by T, then Z(T) = Z(a) = Z(y/a) and Z(a) =

Spec A/a;
(ii) Z(0) = Spec A and Z(1) = ;
(iii) if (T})ser is any family of subsets of A, then
z(Jm) = zm);
i€l iel

(iv) Z(anb) = Z(ab) = Z(a) v Z(b) for any two ideals a, b of A.

1. Remark.

(i) Given a “point” p € Z(a) we get a prime ideal containing a  p < A and thus a
morphism A — Quot (A/p). If we write f(p) for the image of f € A under this
morphism, then Z(a) = {p € Spec A | f(p) = 0 for all f € a}. In this way we
can think of Spec A as a generalisation of the affine space with coordinate ring
given by A, and Z(a) as an algebraic set given as the zero locus of “functions”.
Note however that these “functions” take values in different fields. Rather,
you should think of it as a “section” Spec A — (J,cgp0c 4 Quot (4/p).

(ii) For f € A we can consider the distinguished open subset Dy := Spec A\Z(f).
Again, these form a base for the Zariski topology of Spec A, cf. Exercise

2. Remark. Note that points p € Spec A are not necessarily closed. In fact, we
have
{p}=2()

which is equal to {p} < p is maximal, cf. Exercise[0]38] Those points which are not
closed are so-called generic points of irreducible closed subsets. To see what this
means, consider the ring A = k[z,y]. Then Spec A (or rather its subset of maximal
ideals) corresponds to A%, and Z(y) is essentially the z-axis. The prime ideal or
point (z) is contained in Spec A ¢ Z(y) although Z(z) intersects Z(y) nontrivially.
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Geometrically, saying that (x) is not contained in Z(y) then translates into the
statement that the generic point of the y-axis does not lie in Z(y).

3. Exercise [Ré, 5.8] and [AtMal 1.19]. Show that
(i) X = Z(a) is irreducible < /a = (. x p is prime.
(ii) Spec A is irreducible < the nilradical nil A is prime.

4. Remark. With a closed subset X = Z(T) < Spec A we can associate the

radical ideal
va=[1p= (] »
Tcp peZ(T)
where a is the ideal generated by T, cf. also Corollary [0L7} This gives a one-to-one
correspondence between algebraic sets of Spec A and radical ideals of A — a cheap
version of Hilbert’s Nullstellensatz, cf. also Remark

Here are two examples of how to think of A as a ring of functions on Spec A.

5. Examples.

(i) “Arithmetic” case: n € A = Z defines the “function” or “section” (0) — n e Q
and (p) — nmodp € Z/pZ.

(ii) “Geometric” case: Let A = A(X) be an affine coordinate ring. Then f € A can
be considered as a function on X < A", f(a) = f modm, € A(X)/m,, where
m, is the maximal ideal corresponding to a € X. Note that as a consequence
of our assumptions (the ground field k is algebraically closed) th quotients
A(X)/m, are canonically isomorphic to k so that we can indeed regard f as
a function on X.

The fact that we can interpret A as a set of functions on Spec A allows us to define a
structure sheaf and turns the spectrum of a ring into a truly geometric rather than
topological object. For psychological reasons we therefore often write X = Spec A
in order to emphasise the geometric nature of Spec A.

6. Definition (structure sheaf of Spec A). Let X = Spec A. For every open
subset U ¢ X we define
Ox(U) :={¢ = (vp)pev | ¢p € Ay such that for every
p € U there is a neighbourhood V < U and f,ge A
so that for all qe V, ¢4 = f/g € Aq and g ¢ q}

Elements in Ox (U) are called the regular functions of X over U.

Almost by design, Ox defines a sheaf on X = Spec A, cf. Section The
following proposition immediately generalises the “geometric case” with A = A(X)
an affine coordinate ring, p the maximal ideal corresponding to a point, and f € A
a function on X.

7. Proposition (properties of the structure sheaf of Spec A) [GaAG| 5.1.12].
Let X = Spec A.

(i) For anype X, Ox, = A,.

(i) For any fe A, Ox(Xy) = Ay. In particular, Ox(X) = A.
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Proof. (i) We have a natural morphism ¥ : Ox , — A, defined by ¥([U,{¢
}qer]) = wp. We want to show that W is a bijection.

U is surjective. Any element of A, has the form f/g with f, g€ A and g ¢ p. Then
f/g is a well defined regular function on X, so that f/g = V([X,, {(f/9)q}eex,)-
(Here, (f/g)q denotes the image of f/g € A under the natural localisation map
A— Ay)

VU is injective. Let ¢ = {@q}qev, ¥ = {¢q}qev € Ox (U) for some neighbourhood of
p, and assume that ¢, = 1,. We need to show that [U, ¢]| = [U, 9], that is, ¢ and ¢
coincide in some neighbourhood of p. Shrinking U if necessary we may assume that
¢ = f/g and ¢ = r/s on U, where in particular g and s not in p. Since ¢, = 1,
there exists u € A\p with u(sf — gr) = 0. Therefore, f/g = r/s for any prime ideal
q such that g, s and u ¢ q. This clearly holds for the open set X, n X; n X, n U
which contains p.

(ii) We have a natural morphism W : Ay — Ox (Xy) with U(g/f") = {(9/f")q}qex;-
Again we need to show that it is injective and surjective.

U is injective. This is now the easy direction. Assume that U(g/f") = ¥(h/f*).
We have to show that g/f" = h/f® in Ay This means that for all p € X there
exists u ¢ p such that u(hf™ — gf°) = 0. Therefore, if a denotes the annihilator of
hfT—gf?, then ais not contained in p for any p € X;. In particular, Z(a)n Xy = J
or equivalently, Z(a) < Z(f). But this means that f € y/a, that is, there exists
n € N such that f"(hf” —gf®) = 0in A. Hence (f is invertible in Ay) h/f° = g/f"
in Af.

U is surjective. Let p € Ox(Xy). We must find ¢g/f" € Ay such that ¥(g/f") = ¢.
We cover Xy with open sets U; such that ¢ = g;/f; with f; ¢ p for all p € U;. In
particular, U; © Xy,. As the basic open sets form a base of the topology we may
assume that U; = X}, for h; € A. Then X}, < Xy,, and taking complements gives
Z(f:) < Z(h;) and therefore h; € 4/(f;). This implies that there exists n; € N
with k" = af;, whence g;/f; = ag;/h]*. Since X, = X,ni, replacing h; by hi
allows us to assume that ¢ is represented by fractions of the form g;/h; on Xp,
for an open cover X, of X;. Since X, is quasi-compact a finite number of h;
suffices. (The quasi-compactness is straight forward: Xy < |J, X, & Z(f)
; Z(h;) = Z(33(h;)). Hence f™ € > (h;), that is, f™ is a finite sum Y} a;h;.) On
Xh,n; = Xn,nXn, we have g;/h; and g;/h; representing ¢; by the injectivity already
established it follows that g;/h; = g;/h; in Ap,p,, whence (h;h;)"(gih; — gjhi) =0
for some n. As we have only finitely many h; we may pick one n that works for
all 4, j. Next replace g; by g;h? and h; by k'™ for all i. Then ¢lx,, = gi/hi, and
gihj —gjh; = 0 for all ¢, j. Finally, write f™ = ), a;h; as above, and let g = Y aig;.
Then for every j we have

ghj = Y aigihy = > aihigj = ["g;,
i i
SO g/fr|th =g;/h; = <p|th. Therefore, ¥(g/f") = ¢ on X;. O
8. Remark. It is important to realise that a regular function in the sense of
Definition 4[6]is no longer determined by its value on points. For instance consider

A = k[z]/(2?) and X = Spec A. Then X = {(z)}, and the function Z € A = Ox(X)
is identically 0 € k = A/(Z) on X. However, 0 & = € A.

Morphisms and locally ringed spaces. Once we have functions on spectra
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we need to define morphisms next. It is clear that the maps ¢® : Spec B — Spec A
associated with a ring morphism ¢ : A — B and defined by ¢%(p) = o 1(p)
should define such a morphism between spectra (see also Section [0f in particular

Exercise [0l|39)).

We could just declare morphisms of the form ¢® to be the morphisms between
spectra, but in order to get good functorial properties we need a more abstract
definition which directly involves the functions. The suitable setting will be given
by the concept of locally ringed spaces which we define next. In Remark [I][72] we
encountered ringed spaces (X,Ox) consisting of a topological space X together
with a subsheaf Ox of continuous functions”.

9. Definition (ringed space). A ringed space (X, Ox) consists of an underly-
ing topological space X and the structure sheaf Ox over X. A morphism of ringed

spaces (f, f*) : (X, 0x) — (Y, Oy) is a pair (f : X =Y, f* = {f‘ﬂ,}VCy open) such
that f is continuous and a ring morphism f‘“} 1 Oy (V) = Ox(f~Y(V)) which is
compatible with the restriction maps, i.e. f&, OPYW = Pr-1(V)f-1(W) © f‘”}, that is
Oy (V) —"— Oy (W) (9)
lfe, iqu
et oo L
Ox(f71(V]) === 0x (71 (W)

commutes. If we define the direct image sheaf f;Ox by f;Ox (V) = Ox(f~*(V))
for V < Y open, then this condition just says that f# : Oy — ftOx is a sheaf
morphism.

10. Remark. Unlike in the case of varieties where Ox was a subsheaf of
continuous functions, Ox is now an abstract sheaf. It is therefore not true that a
map f: X — Y between the underlying topological spaces induces a map between
the sheaves, and we need to include f# in the definition.

Prime examples of ringed spaces are spectra of rings:

11. Lemma. For any ring (Spec A, Ogpec 4) is a ringed space. A ring morphism
A : A — B induces a morphism of ringed spaces (f, f*) : (Spec B, Ospec ) —
(Spec A, Ogpec a) with the property that for all q € Spec B, a € Ogpec a(U), a(f(q) =

0 < ffa(q) = 0.

Proof. Let A : B — A be a ring morphism. We let f = \* : Spec A — Spec B be the
associated morphism which is continuous, and we are left with the definition of f['ij
By Remarkwe only need to define fg for U = Dy, a € A since these sets form a
basis for the topology of Spec A. We let fga : Ospec a(Dy) = Ay — Ospec B(D(f))
be the induced map Ay — By, a/f" — A(a)/A(f)". Here, we used Proposition 4@
This gives the sheaf morphism f?. The extra property is equivalent to saying that
the induced morphisms fﬁ(q) : Ospec A, f(q) = Ospec B,q are local, that is if my(q) and
my are the maximal ideals of Ogpec a,f(q) and Ospec B,q, then fﬁ(_ql) (mg) = my(q).

For each p = f(q) € Spec A we can consider the map fg : Ospec A,p = Ospec B,q- If
©p is a germ locally given by g/a”, then fflrp(gop) is the germ of ¢(g)/p(a)” at q.
Under the identification with a map A, — By this sends b/t, t ¢ p, to A(b)/A(2).
This is indeed well defined and local. U



140 UNIVERSITAT STUTTGART

The last property is special to morphisms of ringed spaces f : Spec B — Spec A
which are induced by ring morphisms A — B. This gives rise to the following

12. Definition (locally ringed space). A locally ringed space is a ringed
space (X,0Ox) such that the stalk Ox, is a local ring at each point a € X.
We denote its maximal ideal by m, and write k, for the residue field Ox o/m,.
A morphism of locally ringed spaces (X,0x) — (Y,0Oy) is a pair (f : X —
Y, ft = {f‘ﬁ/}va open) such that f is continuous and a ring morphism f‘u, :
Oy (V) — Ox(f~Y(V)) which is compatible with the restriction maps, i.e. f&, o
PVYW = Pr-1(V)f-1(W) © f‘ﬁ, and such that for the induced maps on stalks, we have
(fH) " (mx,a) = my (), cf. Section for details on sheaves.

Of course, (Spec A, Ogpec 4) is a locally ringed space, and by Lemma 4any ring
morphism A — B induces a morphism of locally ringed spaces Spec B — Spec A. As
promised, the converse is also true so that we get an analogue of Proposition

13. Proposition [Ha, 11.2.3]. Let A and B be rings, and let X = Spec A, and
Y = Spec B be the corresponding affine schemes. There is a 1 — 1 correspondence

between morphisms of locally ringed spaces of schemes X — Y and ring morphisms
B — A.

Proof. In view of Lemma 4 we only need to show that a morphism (f, f%) :
(Spec B, Ospec B) — (Spec A, Ogpec 4) is induced by a ring morphism A : A — B.
Of course, A = fépeCA is the natural candidate. We show that f = \*. Indeed, let
p € Spec Band a € A. Then a(f(p)) = 0, that is, a € f(p) if and only if A\(a)(p) = 0,
that is a € A=*(p). It follows that A=!(p) = f(p). From the diagramm (9) we also
get a commutative diagramm

A B

.

Ax-rp) == By

where f, is uniquely determined by the universal property of localisation. Since

the diagramm also commutes for )\5J instead of f, it follows that A and f* agree at
stalk level, hence they agree as sheaf morphisms. O

14. Definition (affine scheme). A locally ringed space which is isomorphic to
(Spec A, Ogpec 4) is called an affine scheme. Morphisms of affine schemes are
just morphisms of locally ringed spaces.

As usual, isomorphisms are morphisms with twosided inverse. By abuse of notation,
we often refer to Spec A itself as affine scheme, the structure sheaf being understood.
Further, a morphism of schemes Spec A — Spec B is just a morphism in the sense
of locally ringed spaces.

15. Corollary. There is an arrow reversing equivalence of categories between
affine schemes and spectra of rings.

We are going to explore the relationship between affine varieties and affine schemes
in the next subsection. First some examples.
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16. Examples of affine schemes.

(i)
(i)

(iii)

(iv)

If A =k is a field, then Spec A consists of one point with structure sheaf
O = k.

Let A be a discrete valuation ring. It follows from Proposition that
Spec A consists of two points, the generic one (0) and a closed point . (In
contrast to the previous example you should think of this as a “thickened
point” which carries the additional information of a tangent direction — A
arises as the local ring of a smooth curve so that A encodes an infinitesimal
neighbourhood of the point m.) Let K = Quot A be the quotient field of A.
The inclusion morphism A — K corresponds to the morphism of locally ringed
spaces Spec K — Spec A which sends the unique point of (0) € Spec K to the
generic point (0) € Spec A. We can define another morphism of ringed spaces
by f(0) = m and f* : O4 — f;Of induced by the ring morphism A — K.
At stalk level, this induces again the inclusion fﬁl :0am=A—> Ok =K
which is not a local morphism (for the other map we find {%0) 1040 =K —

K the identity which is clearly local). In particular, this provides an example
of a morphism of ringed spaces which is not induced by a ring morphism.
The affine line is the scheme X = Spec k[z]. Its points are either maximal,
corresponding to closed points of X which we can think of geometric points
of the line k. The trivial ideal (0) is the generic point whose closure is all
of k. Similarly, we can consider the affine plane Spec k[, y] whose maximal
ideals correspond to geometric points in the plane k2 and where the trivial
ideal is everywhere dense. The remaining prime ideals are generic points for
the irreducible curve they define, i.e. their closure consists of maximal ideals
correspodning to points in an irreducible curve.

Let X = SpecA and a ¢ A be an ideal, and consider the affine scheme
Y = Spec A/a. The ring morphism A — A/a induces a morphism ¥ — X.
Since Spec A/a consists precisely of the prime ideals containing a we can think
of the image of Y in X as the closed set Z(a) of X. Y is an example of a
closed subscheme.

Schemes have the advantage of greater flexibility in formal manipulations. The
sum of two radical ideals is not necessarily radical so one needs to be care-
ful when considering intersections of affine varieties. For closed subschemes
Y1 = SpecA/a; and Y3 = Spec A/ay of X = Spec A we simply define the
intersection scheme as Y7 n Yy := Spec A/(a; + a2). For instance, let
X = Speck[x,y], Y1 = Speck[z,y]/(y) and Yo = Speck[z,y]/(y — 2% + a?)
for some parameter a € k. If a & 0 we have Y1 n Y2 = Speck[z]/(z —a)(z + a)
which consists of the two intersection points (—a,0) and (a,0). For a = 0
we find Y7 n Ya = Speck[z]/(2?), the point (0,0) with multiplicity two. To
interpret that further, note that for any a, Y1 n Y5 determines a unique line
| = Speck[z,y]/(bz+cy) in C%. Y1 nYsisinl < (b +cy) < (2% —a?,y) wich
happens precisely if b = 0. So the z-axis is the only line in A% which contains
Y1 N Ys regardless of the value of a. For a = 0 this line can be interpreted
as the tangent line to Y7 n Y. In this way, the “nilpotent” information of
k[x]/(z?) encodes “infinitesimal” information.

In analogy to (affine) varieties we get an affine cover of affine schemes by basic
open sets: If f € Athen Dy < Spec A with the induced topology and structure
sheaf is the affine scheme Spec Ay. Indeed, D, and Spec Ay coincide as sets,
they are both equal to {p € Spec A | f ¢ p} (any prime ideal containing f
will be extended to all of Ay under the natural localisation map A — Ay).
As for the structure sheaves, we find for the base of topology D¢, g € A (cf.
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Exercise
ODf(ng) = Ox(Dyg) = Agg
while
OSPCCAf((SpeC Af)g) = (Ap)g = Ayy.

Schemes. Next we introduce the most general geometric object we consider in
this lecture course.

17. Definition (schemes). If (X,0x) is a locally ringed space, then so is
(U, Ox|v) with the induced topology for any U < X open. We say that (X,Ox) is
a scheme if it is covered by open sets U; such that (U;, Ox|y) are affine schemes.
A morphism of schemes is a morphism of locally ringed spaces.

18. Exercise (open subschemes) [Hal Exer. I1.2.2]. Let (X, Ox) be a scheme,
and let U < X be an open subset. Show that (U, Ox|y) inherits a natural scheme
structure. With this structure, U is called the open subscheme.

19. Example. Schemes typically arise via glueing (affine) schemes: Let X;
and X3 be schemes, and let U; = X; be open subsets. Furthermore, let (f, f¥) :
(U1,0x,|u,) = (U2, 0x,|u,) be an isomorphism of locally ringed spaces. We then
define a scheme X, and say that X was obtained by glueing X; and X5, as follows.
As a topological space, X is the disjoint union of X; and X5, wehre we identify
points z; € X; if x5 = f(x1). In particular, we have the inclusions ¢; : X; — X,
and requiring these to be continuous induces a topology on X (in the topology
literature this is sometimes written as X; U, X5). More concretely, a subset U of
X is open if and only if Li_l(U ) is open in X;. Next we define the structure sheaf.
For any open set U < X, we let

Ox<U) = {(81782> | S; € OXL(L;1<U)) and 81|L1_1(U)nU1 = fﬁ(82|b2_1(U)mU2)}

This turns (X, Ox) into a locally ringed space. Since X; and X, are schemes it is
clear that (X, Ox) is locally isomorphic to an affine scheme.

For instance, consider the affine lines X; = Speck[z] = A}, and let U; = A} \{p},
where p is a closed point in A},and where we consider the affine line as an affine
scheme. We let (f, f*) be the identity map. The resulting scheme obtained by
glueing is an affine line with doubled point This is actually an example of a scheme
which is not affine, see for instance [GOWe| Exer. 3.26].

This construction can be easily generalised to (possibly infinite) families of schemes
X;

20. Exercise (Glueing lemma) [Ha, Exer. 11.2.12].  Let X; be a family of
schemes, and suppose that for each ¢ 4 j there is an open subset U;; — X; which we
view as open subschemes of U;. If there are isomorphisms of schemes f;; : U;; — Uj;
such that

(i) for each ¢ and j, fi; = j_il;

(1) fij(Uij 0 Uix) = Uji 0 Uji, and fir, = fin © fij on Uyj 0 Usg.
Show that there exists a scheme X, together with morphisms g; : X; — X for each
i, such that

(i) g¢; is an isomorphism from X; onto an open subscheme of X;

(i) the g;(X;) cover X;
(i) g:(Uij) = :(Xi) 0 g;(X;);
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(iv) gi = gj o fij on Uj;.
We say that X was obtained by glueing the schemes X;.

21. Remark. In the same way we can glue morphisms f : X — Y. More precisely,
if {U;} is an affine cover of X, and let {U;;i} be an affine cover of U; n Uj, then
f: X —Y is determined by f; : U; — Y such that the restrictions of f; and f; to
U; nUj agree, i.e. filu,,, = fjlu,;, for all i, j and k.

Proposition 4[T3] generalises as follows:

22. Proposition [GaAGl| 5.3.7]. Let X be a scheme, and let Y = Spec A be an
affine scheme. Then there is 1 — 1—correspondence between morphisms X — Y and
ring morphisms A = Oy (Y) —» Ox(X).

Proof. Let {U;} be an affine cover of X, and let {U;;x} be an affine cover of U; nUj.
Then f: X — Y is determined by the f; : U; — Y as in the previous Remark 421]
As these sets are affine, they correspond to ring morphisms A — Oy, (U;) = Ox (U;)
and A — Ox|y,;,- Hence a morphism f : X — Y is the same as a collection of ring
morphisms ff : A — Ox(U;) such that the compositions py,u,;, © ff 0y (Y) —
Ox (Uijx) and pu,u,,, © fj’j : Oy (Y) — Ox(Uiji) agree for all ¢, j and k. By the
sheaf properties of Ox this is preceisely the required data for a ring morphism

The local models Spec A; usually depend on the open set U;. To make contact with
k-varieties we therefore need to introduce extra data.

23. Definition (scheme over S). Let S be a fixed scheme. A scheme over
S is a scheme X together with a morphism X — S. A morphism X — Y
between schemes over S is a scheme morphism which commutes with the two
given morphisms to S. We denote by Sch(S) the category of schemes over S. If
S = Spec A we also write Sch(A) for the schemes over Spec A.

24. Example. Let X be a scheme, A = Z and consider the natural inclusion
morphism Z — Ox(X). By the previous Proposition we get a scheme morphism
X — SpecZ, that is, a general scheme can always be considered as a scheme over
Z.

An S-scheme X over S is said to be of finite type over S if there is a covering of
S by open affine subsets V; = Spec B; such that f~1(V;) can be covered by finitely
many open affine subsets U;; = Spec A;;, where each A;; is a finitely generated
Bj-algebra. In particular, a scheme is of finite type over k if it can be covered by
finitely many open subsets U; = Spec Ay, where A; is a fintely generated k-algebra.
Furthermore, a scheme is reduced if the rings Ox (U) have no nilpotent elements
for all open subsets U < X. The following statements are easy consequences of
what we said above:

(i) Spec A is a scheme over k < there is a morphism k — A, i.e. Aisan A is a
k-algebra. Moreover, a morphism of k-schemes Spec A — Spec B correspond
precisely to the k-algebra morphisms B — A.

(ii) Spec A is of finite type over k if and only if A is a finitely generated k-algebra.
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(iii) Spec A is reduced and irreducible < f-g=01in A implies f =0or g =0 <
A is an integral domain. Indeed, assume that f-g =0 but f & 0 and g £ 0.
If g and f are the same up to some power, then A is not reduced. Otherwise,
we get a decomposition of Spec A into two proper closed subsets Z(f) and
Z(g), whence Spec A is not irreducible (check the details as an Exercise).

From these definitions and observations we immediately deduce the

25. Proposition [GaAG| cf. 5.3.5].  There is a 1 — 1—correspondence between
affine k-varieties and their morphisms and reduced, irreducible schemes of finite
type over k.

26. Proposition (k-varieties and schemes over k) [Ha, 11.2.6]. There is a
natural fully faithful functort : Vary — Sch(k) from the category of varieties to the
category of schemes over k. For any variety X its underlying topological space is
homeomorphic to the set of closed points of t(X), and its sheaf of reqular functions
is isomorphic to the restriction of the structure sheaf of t(X) to this set of closed
points.

Proof. We sketch the proof and leave details as an Exercise. Let X be a variety.
We define t(X) to be the set of nonempty irreducible subsets of X. The closed sets
of t(X) will be sets of the form ¢(Y) for Y < X closed. Furthermore, we define a
map a: X — t(X) by a(p) = {p}. Then (t(X), a4Ox) is the desired scheme. [

Fibre products. Next we want to discuss products in Sch(S), that is, given
two schemes f : X — S and g : Y — S in Sch(S), we want to construct the
product scheme X xg Y. Intuitively, this should correspond to the set of points
{(z,y) e X xY | f(x) = g(y)}. In particular, X X Y would correspond to the
“set-theoretic” product. We will first define the fibre product in more “categorical
terms” via a universal property.

27. Definition. Let f: X — Sand g:Y — S be schemes over S. Then the fibre
product X xgY is the scheme together with the projection maps 7x : X xgV — X
and my : X xgY — Y such that the square in commutes and such that for
any scheme Z with morphisms to X and Y making the diagramm with the given
morphisms X — S and Y — S commutative, there exists a unique morphism
Z — X xgY making the whole diagramm

(10)

commutative. If X and Y are k-schemes we let X x Y = X x; Y.

28. Easy properties. Assuming existence and uniqueness of fibre products for S-
schemes f : X — Sand g: Y — S for a moment the universal property immediately
implies
e If U c X and V < Y are open subsets = U xg V = 7' (U) n 7' (V)
X xgY is an open subset.
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e If U = S is an open subscheme = f~1(U) xy g~ Y(U) = f~1(U) x5 9~ (V).

The goal of this paragraph is to show uniqueness (so that we can indeed speak
about the fibre product) and existence of fibre products. Uniqueness is easy and
follows essentially from the universal property.

29. Proposition (uniqueness of the fibre product) [GaAGl 5.4.2]. The fibre
product, if it exists, is unique up to canonical isomorphism of S-schemes.

Proof. Assume that I and F5 are two schemes for which the entire Diagramm
is commutative with F; at the place of X xg Y. Replacing Z with F; and F5
respectively yields unique morphisms ¢ : F}; — F5 and ¢ : Fy, — Fj, whence
morphisms Y oy : F} — F; and p o : Fo — F5. Since these morphisms make
Diagramm commute the uniqueness of the morphisms implies ¢ o ¢ = Idp,
and ¢ o) = Idp,. ]

To show existence we first remark that the universal property of Diagramm is
reminiscent of the universal property of tensor products

30. Proposition (existence of fibre products) [GaAGl| 5.4.7]. For any two
S-schemes f: X — S and g : Y — S the fibre product X xgY exists.

Proof. The affine case. Assume that X = Spec B, Y = SpecC and S = Spec A
are affine. The morphisms Spec B — Spec A and Spec C' — Spec A turn B and C
into A-modules. We then define X xgY = Spec B ®4 C and claim that this is
indeed the fibre product. If Z — X X g Y is a morphism then this corresponds to
a morphism B®4 C — R = Oz(Z). But this morphism is uniquely determined by
the factorisations B - B®4 C — Oz(Z), b —b®1, and C - B®4 C — Oz(2),
¢ — 1®c, and the morphisms B — Oz(Z) and C — Oz(Z) coming from the maps
Z —>Xand Z —-Y.

The general case. We obtain the general case by glueing. Suppose that X; is an open
covering of X (in particular, X; are subschemes of X), and that we can construct
X; x5Y. Then X x5V exists. Indeed, let X;; = X; n X; and Uy; = 7y (Xi;)-
By the properties of the fibre product 4 Uij = X;5 xsY. By symmetry and the
universal property of the fibre product we get unique isomorphisms ¢;; : U;; — Uy
which are compatible with the projections and define glueing data for the family of
schemes X; xg Y. This gives X xg Y. Hence, if Y and S are affine, X xgY exists
for any X by using the first step and the glueing construction. By interchanging
X and Y we see that X xg Y exists whenever S is affine. If not, take an affine
cover S; of S. Then f=1(S;) x5, g1(S;) exists and is equal to f~1(S;) x5 g7 (S;)
by the second property of 428 Hence we can glue these fibre products to obtain
X xgY. O

Fibre products are not only useful for describing products, but also for encapsulat-
ing various other construction of schemes.

31. Example: Intersection schemes. Consider two “inclusion morphisms”
Y; — X, ¢ =1, 2, for instance for two open or closed subschemes Y; » of X. Then
Y1 nYs :=Y] x x Y;5 is the intersection scheme of the X-schemes Y7 and Y5. For
instance, if X = Spec A and Y; = Spec A/a;, then Y1 n Y5 = Spec (4/a1 ®4 A/as) =
Spec A/(ay + az) in accordance with Example (v) of 4[16]
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32. Example: Fibres of a morphism. Let f: X — Y be a morphism, and
p €Y. Its residue field k(p) is just Oy,,/m,, and gives rise to a map Speck(p) — Y
which sends the unique point of Spec k(p) to p. Then
f7H(p) == X xy Speck(p)
is called the fibre of f: X — Y over p. If X = Spec B and Y = Spec A are affine
and p = p € Spec A, then
f(p) = Spec B®a Ay/pAy = Spec B ®a k(p),

whose underlying topological space is indeed homeomorphic to f~1(p) (exercise).

33. Example: Base extension. Let f: X — Y and f: Y’ — Y be morphisms.
The base extension of f : X — Y is the fibre product X xy Y’. Consider, for
instance, a scheme Y — k over k, and a field extension k c K, e.g. the algebraic
closure of k if k is not algebraically closed. Then Y xgpecr Spec K is a scheme over
K. For instance, if Y = Spec A is an affine variety so that A is a k-algebra, then
Y Xgpeck Spec K = Spec (A ®y, K) an affine scheme associated with a K-algebra.

Projective schemes. The projective space can be considered as a scheme by
glueing the affine pieces Speck[yi,...,yn]- However, there is a global description
in analogy with Section [I} Let S = @®4>054 be a graded ring. Recall that S; =
@d>0S54 (this corresponds to the “irrelevant ideal” (x,...,x,) in k[zo,...,Tn]).

34. Definition (Proj of a graded ring). Let S be a graded ring. Then the
projective spectrum of S is Proj S = {p € Spec S | p is homogeneous, S ¢ p}.

Next we let Z(s) = {p € ProjS | s  p} for any homogeneous ideal s of S. The
following lemma is proven in the same way as in the affine case:

35. Lemma [GaAG] 5.5.2]. Let S be a graded ring.
o If {s;} is a family of homogeneous ideals of S = (), Z(s;) = Z(3s;) <
Proj S.
o If 519 are two homogeneous ideals of S = Z(s1) U Z(s2) = Z(s182) C
Proj S.

The lemma enables us to define a topology on Proj S by taking Z(s) as closed sets
as in the affine case. Next we define the structure sheaf.

36. Definition. For p € Proj S we let
Sy =1f/g91g¢pand f, ge Sy for some d}.
If U < Proj S is an open subset we let
Oprojs(U) = {{ep}per | ©p € S(py and there exists an open covering V,, of U
and fo, go € Sq such that ¢, = fo/ga € S(y) for all pe V,}

It directly follows from the local nature of the definition that Op,.js is a sheaf.

37. Example. Taking S[n] = k[zo,...,x,] with the usual grading we recover
the projective space P} = Proj S[n]. A projective subscheme is a scheme of the
form Proj S[n]/s.
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38. Proposition [GaAGl 5.5.4]. Let S be a graded ring.

(i) For every p € Proj S, the stalk Opyojs,p is isomorphic to Sy,.

(ii) For every homogeneous f € Sy let Dy < Proj S be the basic open set Dy :=
ProjS\Z(f) = {p € Proj S | f ¢ p}. Then ProjS = UfeS+ Dy and we have
(D, Oprojslp;) = SpecS(yy. (Recall that Sipy = {g/f" | g € Sr.aegr}.) In
particular, Proj S is a scheme.

Proof. (i) There is a well-defined morphism Oy, — S(,) which sends ¢ = {¢q} to
¢p. The proof that this is an isomorphism carries over from the affine case.

(ii) Let p € Proj S be a point. Then S, ¢ p so that there is f € S, with f ¢ p.
Hence p € Xy so that the Dy cover ProjS. Next we define an isomorphism ¢ :
Dy — Spec S(y). If 5 is a homogeneous ideal of S, set p(s) = 55y N S(y). Restricting
to prime ideals in Dy yields a map Xy — Spec Ry which is a bijection. (To show
injectivity note that sS; = tSy imply s = t by Corollary Moreover, ¢(s)
is the contraction of Sy with respect to S — Sy so that p(s) = ¢(t) implies
558 = tSy by Proposition ) Since for all s © S, p(s) < p(p) < s < p, ¢ must
be a homeomorphism. Finally, for p € Dy the local rings Opyojs,p = S(p) and

OspecSiy.0m) = (S(1))em) = 1(9/f7)/(h/f?) | deg g = rdeg f, degh = sdeg f, h ¢ p}

are isomorphic for f ¢ p which gives the desired isomorphism at sheaf level. O

39. Example. The projective space P} can be covered by the affine schemes
D,, = Speck[zo,...,&n]s = AT

Next we want to discuss the relationship between projective subschemes and ho-
mogeneous ideals in k[zo, ..., x,]. Of course, any homogeneous ideal determines a
projective variety and thus a projective subscheme. However, as in the affine case,
projective schemes are more general as they also contain reducible or non-reduced
schemes such as Proj k[, z1, 22]/(z122) or Proj k[zo, z1]/(z?).

40. Definition (saturated ideal). Let s ¢ S[n] = k[zo,...,z,] be a homoge-
neous ideal. The saturation 5 of s is defined to be

5 ={se S[n]| 2" ses for some m and all i}.

In particular, s © 5. If § = 5, then s is said to be saturated.

41. Example. Ifs = (fxo,..., fa,,) with f € S[n] homogeneous and irreducible,
then § = (f). Indeed, if fz; € s for all ¢, whence (f) < 5. On the other hand, s € §
implies z* - s € (f) for all 4, whence s € (f) for f is irreducible.

In a way, the saturation of a homogeneous ideal is a way to remove the ambiguity
of the defining ideal of a projective scheme. Indeed:

42. Lemma [GaAGl 5.5.9]. Let s, t < S[n] = k[xq,...,z,] be homogeneous ideals
=

(i) 5 is a homogeneous ideal;
(ii) ProjS[n]/s = ProjS[n]/s;
(iii) ProjS[n]/s = ProjS[n]/t < 5 =t;
(iv) 84 = 84 for d » 0 (where 54 denotes the set of homogeneous elements of degree
d etc., and d » 0 means that equality holds for all D = d for d big enough).
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Proof. (i) Let s € § be any (possibly nonhomogeneous) element. We need to show
that the homogeneous components s; € 5. By definition, x]* - s € 5, hence so are
the homogeneous components z}" - s4, that is sq € 5.

(ii) Consider the covering D,, of ProjS[n]/s. Then p € D,, n ProjS[n]/s = {s
p € ProjS[n] | =; ¢ p} which clearly contains D,, n ProjS[n]/s. So let p be a
homogeneous prime ideal containing s with x; ¢ p, and let s € 5. Then s-2]" € 5 < p,
and thus s € p for p is prime and x; ¢ p. We have to show that < z; ¢ p.

(iii) By (ii), X = ProjS[n]/s = Proj S[n]/s. We show that we can recover s from
X. Indeed, D,, n X = Spec (S[n]/5)s,) so that 5 = {s € S[n] | s|ls;=1 = 0} where
S|z;=1 denotes the element s € k[xq, ..., z,] obtained by setting x; = 1 and where
we consider s|,,—1 as a function on the affine scheme D,, n X.

(iv) The nontrivial inclusion is 54 < s4 for d » 0. Let f; be homogeneous generators
of 5. Let D; be the maximal degree of the f;. By definition, there is also a number
dy such that z; - f; € s for all j, i and d = Dy. We let D = D; 4+ (n + 1)D, and
consider f € 84 for d = D. Write f = > a;f; where a; is homogeneous and is of
degree at least (n 4+ 1)Ds. This implies that every monomial of a; contains at least
one x; with a power of at least D,. But this power multiplied with f; lies in s by
construction. Hence a : if; € s for all i, whence f € s4. O

If X is a projective subscheme of P™ we let Z(X) be the saturation of any ideal
5 < S[n] such that X = ProjS[n]/s. This is well-defined in view of the previous
lemma. We call Z(X) the ideal of X and S(X) the homogeneous coordinate
ring of X.

43. Corollary [GaAGl 5.5.11]. There is a 1—1-correspondence between projective
subschemes of P and saturated homogeneous ideals s < S[n] given by X — Z(X)
and s — Proj S[n]/s.

44. Exercise (union of schemes). Let X = Spec A and Y = Spec B be affine
schemes. Show that the disjoint union X u'Y is an affine scheme with X uY =
Spec A x B, where A x B is the usual product ring of A and B.

4.2. First applications. Hilbert polynomials and Bézout’s theorem. First
we discuss some numerical invariants of projective schemes. An obvious one is
dimension. For a general scheme (X, Ox) this is defined to be the topological
dimension of the underlying topological space X. In particular, a 0-dimensional
projective scheme is a finite collection of points (this is not completely obvious for
a general scheme X need not to be a Noetherian topological space; however, this
is true for projective schemes). To get more invariants we introduce the following
function.

45. Definition. Let X be a projective subscheme of P}}, and consider its
homogeneous coordinate ring S(X) together with its natural grading where an
equivalence class f is homogeneous of degree d < f € S[n]y. (This is indeed well-
defined: If f = g are two homogenous representatives of the same equivalence class,
then f—ge Z(X). If f and g do not have the same degree, then f, g € Z(X) for
this is a homogeneous ideal and therefore contains the homogeneous components
of any of its elements so that f = g = 0.) We define the Hilbert function of X
to be the function

hle—>Z, d'—>hx(d) = dimkS(X)d.
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(Since we trivially have hx(d) = 0 for d < 0 and hx(d) = 0 for d = 0 we wil often
consider hx as a function N — N).

46. Examples.
(i) Let X =P™. Then S(X)4 = S[n]q so that the Hilbert function is

<d+n > _(d+n)(d+n-1)...(d+1)

hx(d) = n =]

In particular, hy(d) is a polynomial of degree n in d with leading coefficient

1/n! (note that ( CZ ) is a polynomial of degree i in d) with leading coefficient

1/4)).
(i) Let X = {[1:0],[0: 1]} = P! be two points in P!. Then Z(X) = (x¢z1) so
that a basis of S(X), is given by {1} for d = 0 and {x¢, z{} for d > 0. Hence

1 ford=0
hx(d)_{ 2 ford>0

On the other hand, let X < P! be the double point given by Z(X) = (x3).
Then a basis of S(X)g is given by {1} and {zoz?"', 2%} so that we find the
same Hilbert function as in the case of two seperate points.

(ili) Let X = {[1:0:0],[0:1:0],[0:0: 1]} = P?} three points which are not
collinear, that is, they are not on a line. Then Z(X) = (zoz1, ToZ2, 12T2) SO
that {zd, 2,24} is a basis of S(X); and we find as above

1 ford=0
hX(d):{ 3 ford>1

(iv) Let X = {[1 : 0],[0 : 1],[1 : 1]} = P! be three points. Then Z(X) =
(x%xl —x0z?). The relation 2321 = xoz? reduces the power of ¢ in monomials
xhrl with i > 2, j > 1. Hence a basis of S(X)y is givenby {1} for d = 0,

{xo, 21} for d = 1 and {xd, xozd™", 29} for d > 1. Tt follows that

1 ford=0
hx(d)=< 2 ford=1
3 ford=2

We find the same Hilbert function for three collinear points in P2.

These examples show the following. First, hx(d) does not only depend on X as
a point set, but also on the way X is embedded into P". Secondly, hx becomes
constant for d » 0. We want to generalise these observations. First we investigate
hx for 0-dimensional projective schemes.

47. Lemma [GaCA| 6.1.4]. Let X be a zero-dimensional subscheme of P} =
(i) X = Spec A for some k-algebra A. In particular, X is affine;
(ii) dimg A < oo;
(iii) hx(d) = dimy A for d » 0. In particular, hx (d) is constant for large values of
d.

48. Remark. The number dimy, A is called the length of X. It can be interpreted
as the number of points together with their schemetheoretic multiplicity, cf. also

Example 4[16] (v).
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Proof. (i) Since X is a finite collection of points we may choose coordinates such
that the hyperplane {zy = 0} does not intersect X. Hence X = X n D,, which is
affine by Proposition 438

(ii) We may without loss of generality assume that X is irreducible, that is, X
consists of a single point. Otherwise, X is the finite disjoint union of points so
that A is given as the direct product of the rings of the respective points, cf.
Exercise 4[44] Furthermore, choosing suitable coordinates, we may assume that
this point is the origin of some A}. Then, writing X = Speck[z1,...,2,]/a we
have v/a = (z1,...,7,) so that for all i, z¢ € a for some d. It follows that any
monomial of a polynomial of degree D := d-n must lie in a for the monomial must
contain at least one a7 factor with j > d. The polynomials of degree less than D
therefore generate the k-vector space A = k[x1,...,x,]/a which therefore must be
finite dimensional.

(iii) The homogeneous ideal Z(X) is obtained as the homogenisation of a. Con-
versely, we obtain a by evaluating elements in Z(X) at g = 1. For d = D we
therefore get an k-vector space isomorphism S; — A given by

(k[xo, . ,xn]/I(X))d = k[x1, ... xn]/a, o fleg=1

with inverse
Tn

x _
klz1,...,2,]/a — (k[zo,. .. 7gcn]/I(X))d, f— f(x—;, o x—o)xg = fp- mg deg f
where f}, denotes the homogenisation of the polynomial f. (Note that the k-algebra
A = k[xi,...,x,]/a contains a basis of polynomials of degree < d this is indeed
well-defined.) O

Next we discuss the general case.

49. Proposition [GaAG| 6.1.5] and [Hal 1.7.3].  Let X be an m-dimensional
projective subscheme of P™. Then there is a unque polynomial xx € Q[d] such that
hx(d) = xx(d) for d » 0. Furthermore,

(i) The degree of xx is m;

(ii) The leading coefficient of xx is 1/m! times a positive integer.

xx 4s called the Hilbert polynomial of X.

Proof. By induction on m. m = 0 follows from the lemma, so let m > 0. By a
linear change of coordinates we may assume that no component of X lies in the
hyperplane H = Z(zg). In particular, dim(X n H) < dim X (this follows essentially
from Exercise. We have an exact sequence of graded vector spaces over k (with
S = k[‘r()? s 7xn])

0 —— S/I(X) —> S/I(X) —= S/(Z(X) + (z0)) — 0.

If multiplication by zy were not injective, then there would be a homogeneous
polynomial such that f ¢ Z(X) but xof € Z(X). Hence X = (X n Z(f)) v (X nH).
as no irreducible component lies in H by assumption we would habe X = X n Z(f)
and thus f € Z(X). Taking the degree d-part of this sequence for d >> 0 (so that
(Z(X) + (z0))a = Z(X) + (z0) 4 as in Lemma 4 we get

hxmm(d) = hx(d) — hx(d—1).

By induction, we know that hx g (d) is a polynomial of degree m — 1 with leading
coefficient 1/(m — 1)! for d » 0 so that

hixnm(d) = mz_lcl( I >

i=0
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with ¢; € Z and ¢,,_1 positive. We claim that

for some ¢ € Z. This follows by induction over d for

hx(d) = hx~m(d) +hx(d—1)

m—1 d m—1 d
—ZCZ‘<7:>+C+ Z{)c’L(Z-Fl)

1=0
o d+
o Z;)CZ< i+1 >

from which the claim follows (the constant ¢ takes care of the start of the induction).
O

50. Remark. By Lemma 4 (iv) we can actually replace the saturated ideal
Z(X) by any ideal with X = ProjS/I for the computation of the Hilbert polyno-
mial.

51. Definition. Let X be a projective subscheme of P". The degree deg X
of X is dim X! times the leading coefficient of the Hilbert polynomial xx. By the
previous proposition, this is a positive integer.

52. Examples.

(i) It follows from Lemma 4 that deg X = length of X for a zero dimensional
scheme X.

(ii) The Hilbert polynomial of P" is xpn (d) = < d —1’; " ) . It follows that deg P™ =
L
(iii) Let X = ProjS/(f) where f some homogeneous polynomial. In particular,

dimX = n — 1. Then deg X = degf. Indeed, the dimension of the d-th
graded part of S/f - S is (for d » 0)

hX (d) = dim Sd — dim Sd—dcgf

_ ( d—;n)_(d-ﬁ-n;degf)
:%((d+n)-...-(d+1)—(d—degf+n)~...-(d—degf+1))

de
= &/ d" ' + lower order terms.

(n—1)!

(iv) There are several ways of embedding P! into P2, for instance as a linear
subspace [z : y] € P* — [z : y : 0] € P? or via the Veronese embedding
[z :y] e P [22: 2y : y?] € P2. Now the first embedding is given by the
equation zo = 0 while the second is given by xgxs — 22 = 0 resulting in two
rational curves (curves biregular to P!) of degree 1 and 2 respectively.

53. Proposition. Let X; and X5 be two m-dimensional projective subschemes of
P™, and assume that dim(X; n Xa) < m. Then deg(X; U Xa) = deg X7 + deg X5.
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Proof. We have X1n X5 = Proj S/(Z(X1)+Z(X2)) and X;UX;y = Proj S/(Z(X1)n
I(XQ)). The exact sequence

0——=S/(Z(X1) + Z(X3)) — S/I(X1) @ S/I(X2) — S/(Z(X1) + I(X2)) —0

fr (f: f)

(fag)H f_g

implies that hx, (d) + hx,(d) = hx, x,(d) + hx,~x,(d) for large d. In particular,
the same equation holds for Hilbert polynomials. Comparing coefficients implies
the result for dim(X; n X3) < m for only hx,(d) and hx, x,(d) have degree m
terms. 0

54. Example of invariants associated with the Hilbert polynomial. If X
is a projective subscheme of P™, then the number

Pa(X) = (1) - (xx(0) — 1)
is called the arithmetic genus of X (see also Section [pli5.3). One can show tha
this is independent of the projective embedding and that it is in fact a birational
invariant (see for instance [Ha, Exercise I11.5.3], and if X is a smooth curve over C,

then g(X) is just the topological genus. For instance we find p,(P™) = 0 for all n
which in particular gives p,(P{) = 0 reflecting the fact that P{ is simply connected

(see also Proposition 4 and 4.

We can use the theory developed so far to prove the famous

55. Theorem (Bézout). Let X be a projective subscheme of P of positive
dimension, and let f € S be a homogeneous polynomial such that no component of
X is contained in Z(f). Then

deg (X N Z(f)) = deg X - deg f.

Proof. We consider the exact sequence

0 —= S/I(X) —L> S/T(X) —= S/(T(X) + () —= 0.
from which we deduce that

xx(d) = xx(d —deg f) + xx~z((d)
for d large enough. On the other hand,

_deg X

xx(d) = ' d™ + ¢pp_1d™ ! + terms of order at most d™ 2
m!

where m = dim X . It follows that

deg X, . m m— m—
XXn2(f) = 3 (d™ — (d—deg f)™) + cpp1(d™ " = (d — degf)™ )
+ terms of order at most d™ 2
degX m—1 m—2
== mdeg f - d + terms of order at most d .

We conclude that deg(X n Z(f)) = deg X - deg f. O
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56. Example (classical Bézout). Let C; and C3 be two curves in P? without
common irreducible components given by homogeneous polynomials of degree d;
and do. In particular, the intersection C7 n C5 is a 0-dimensional scheme. Then we
find for its length deg(C; nCy) = dj -da, that is, the two curves intersect in precisely
dy - dy points counted with their scheme theoretic multiplicity. In particular, Cy
and Cy intersect set-theoretically in at most d; - dy points and at least in one point.

57. Example (geometric interpretation of the multiplicities).

(i) If C, and Cy are smooth and both curves have different tangent lines at the
intersection point, then the multiplicity is 1.
(ii) If Cy and Cy are smooth at P and are tangent to each other, then the inter-
section mulitplicity is at least 2.
(iii) If Cy is singular and Cs is smooth, then the intersection multiplicity is at least
2; if both curves are singular, then the intersection multiplicity is at least 3.

To prove this we first observe that this is a local statement so we may assume
that C; are affine curves in A? intersecting at the origin, with defining polynomials
fi = a;x + by + higher order terms. The spectrum of k[x,y]/(f1, f2) is just the
scheme-theoretic intersection of C; and Cs. If for instance, both curves are singular
so that no linear term arises (i.e. a; = b; = 0), then 1, x and y are three linearly
independent elements k[z,y]/(f1, f2) so that the length of the origin is at least 3.

58. Exercise (twisted cubic curves and its generators).  Consider the
twisted cubic curve in P3 given by

CZ{[Ioi...Il'g]|I%*CE0.T2=$§*I1I3=I0I37I1$2:O}.

Then its degree is 3 and its ideal cannot be generated by fewer than three polyno-
mials.

Proof. Assume to the contrary that Z(C) = (f, g) for homogeneous polynomials f
and g. Then deg f - degg = 3 so that one of the polynomials must be linear. But
then C' would be contained in some hyperplane which is not the case. O

As a further application, we prove:

59. Corollary [GaAG| 6.2.10]. Ewvery isomorphism P™ — P" is linear, i.e. of the
form f(x) = A-x for Ae GL(n + 1,k).

Proof. Let H be a hyperplane, and L be a line in P which is not contained in H,
that is, H and L correspond to an n-dimensional and a 2-dimensional subspace of
k™*! which intersect transversally, that is, in a line through the origin. Then H n L
is scheme-theoretically just one reduced point, and so is f(H) n f(L) for f is an
isomorphism. It follows that deg f(H) n f(L) = 1. As degrees are positive integers
we necessarily have deg f(H) = 1. Hence f maps hyperplanes to hyperplanes. In
particular, the coordinate functions x; get mapped to linear functions which defines
the (dual) matrix A. Since f is invertible, so is A. O

60. Exercise. Let C' be an irreducible curve of degree d. Then C has at most
(d—1)!/2(d — 3)! singular points.
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Divisors on curves. The intersection scheme remembers (a) the actual set-
theoretic intersection (b) the scheme-theoretic multiplicities. We formalise this
kind of information next.

61. Definition. Let C < P™ be a smooth projective (and thus irreducible)
curve. A divisor on C is a formal finite linear combination D = a1p1 + ...+ ampm
of points p; € C with integer coeflicients a;. We denote the group of divisors
(with the obvious group operations) by Div C. The points for which a, + 0 form
the support of D. The degree of a divisor > a;p; is the sum > a;. Obviously,
deg : Div C' — Z induces a group morphism.

62. Examples of divisors.

(i) Let Z < P™ be a zero-dimensional projective subscheme of P, and let p1, ..., pm
be the points in Z nC. The length of Z gives each point p; a scheme-theoretic
multiplicity a;. Hence we obtain a divisor

(2) = Z a;iPi
which we call the divisor induced by Z.

(ii) On the other hand, consider the hypersurface of P™ defined by a nontrivial ho-
mogeneous polynomial f such that C' is not contained in Z(f). Then we get a
O-dimensional intersection scheme Z = Z(f) n C. We denote by (f) := (Z) =
> a;p; the induced divisor. In particular, if C' and C” are two curves in P2, this
gives rise to their so-called intersection product in Div C denoted by C-C".
There are at most deg(f) = > a; = deg f - deg C points on (f) by Bézout,
and we obviously have a map S(C)4\{0} — Div(C), f — (f) = C n Z(f)
since we are free to add any element g € I(C) to f. Indeed, cover P™ by
the standard charts U; given by x; # 0. For instance, Z(f + g) n C n Uy =
SpeCk[yl, s 7yn]/(I(C)v f+ g) |960=1 = Spec k[yla s ,yn]/(I(C), f) |Io=1 (as—

suming that the intersection scheme is not empty) etc.

63. Lemma [GaAG| 6.3.3]. Let C < P" be a smooth irreducible curve, and let
f, g€ S(C) be nontrivial homogeneous elements in the coordinate ring of C. Then

(f9) = (f) + (9)-

Proof. Let (fg) = Y, a;p;.- Set theoretically the zeros of fg are the union of the
zeroes of f and g so that (f) = Y bipi, (9) = X cip;. We have to show that
a; = b; + ¢;. Fix i and an affine open set U = Spec A which only contains p;. Then
a; = dimg A/(fg), b; = dimg A/(f) and ¢; = dimg A/(g). The result now follows
from the sequence

0 A/(f) == AJ(fg) —= A/(g) —0

which is exact (C is irreducible so that A is an integral domain). d

64. Definition (divisor of a rational function). Let C' = P™ be a smooth,
irreducible curve and let ¢ € K(C)* be a nonzero rational function. By definition
we can write ¢ = f/g for some nonzero f, g € S(C)g4, cf. Proposition We
define the divisor of the rational function ¢ by

(@) = (f) — (9) € Div(C)
and think of (f) as the divisor of zeroes of ¢ and (g) as the divisor of poles.

Note in passing that deg(p) = deg(f) — deg(g) = ddegC' — ddeg C = 0.
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65. Example. Let C = P! and consider the functions f(zg,z1) = zoz; and
g(z0,71) = (1 — w0)?. Then (f) = p1 + p2 with p; = [1: 0] and pz = [0 : 1] and
(g9) = 2p3 where p3 = [1: 1]. The quotient f/g defines a rational function ¢ on P!
with (p) = p1 + p2 — 2p2. Moreover, deg(f) = deg(g) = 2 and deg(y) = 0.

The map (+) : K(C)* — Div C that sends every rational function to its divisor is
clearly a group morphism which maps K(C)* onto a subgroup of Div C.

66. Definition (Picard or divisor class group). We define the divisor class
group or Picard group by

CI(C) = Div(C)/(K(C)"),

that is, it is the set of equivalence classes where D, D’ in Div(C) are linearly
equivalent < D — D' = (). Note that the group morphism deg : Div(C) — Z
descends to CI(C). We denote by Cly(C) its kernel, the degree 0 elements of the
divisor class group.

Unlike the group of divisors which is more topological in nature than geometrical,
the divisor class group is a rich source of geometric information. We discuss some
examples next.

67. Proposition [GaAGl, 6.3.11]. The degree map induces an isomorphism
Cl(PY) = 7,
that is, any two divisors having the same degree are linearly equivalent.

Proof. We need to show that any divisor D = Y. a;p; with deg D = 0 is the divisor
of a rational function. Indeed, if [z; : y;] are the homogeneous coordinates of p;,
then D = () with o(x,y) = I, (zy; — yz;)*. O

68. Exercise. Show that a smooth conic is isomorphic to P*. Conclude that its
divisor class group is isomorphic to Z.

Next we consider the divisor class group of a cubic curve.

69. Proposition [GaAGl 6.3.15]. Let C be a smooth cubic curve, and let py € C
be a point. Then the map
C—Cly, p—po (11)

is a bijection.

Proof. The map is obviously well-defined. We must show that it is bijective. For
surjectivity, let D = p1+...4pm—q1—. . .—qm be any divisor of degree 0 (the points
p; and ¢; are not necessarily distinct). If m > 1 let p and ¢ be the third intersection
point of the lines determined by p1p2 and ¢1¢o respectively. (If for instance p; = po
then either the tangent intersects C in a further point p, or p = p; so that in any
case the tangent line induces the divisor 2p; + p on C). Then p; + p2 + p and
q1 + g2 + q are both divisors on C defined by linear forms [y and l5. The quotient
¢ = ly/l5 is a rational function giving rise to the divisor p1 + po +p —q1 — g2 — q
which is zero in C1(X). In particular, D = ps+ ... 4+ pm +q¢—Gqs + ...+ Gm — P
in CL(X) so that we have reduced the number of positive and negative points in D
by one. Continuing in this vein we finally obtain a divisor of the form D = p — ¢,
that is, m = 1. Then let p’ be the third intersection point of the line determined
by p and pg with C and let ¢’ be the third intersection point of p’q. Then as before
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p4+p+po—(p +q¢+4q)=0in CI(X) so that D = p— ¢ = ¢ — qo. For injectivity
(which is in the vein of surjectivity), see [GaAGl 6.3.13]. O

70. The group law on a plane cubic curve. Let C' be a smooth cubic curve.
By the previous corollary there exists a natural group structure @ on C' with pg
serving as identity element determined by p@q¢—po =p—po+q¢—po = p+ q—2po.
On the other hand, C1(C) can be made into a variety. While this is true for any
smooth projective curve (Cl(C) is the so-called Picard variety) the group structure
on C is special to the cubic case. Let us briefly consider this group structure from
a geometric point of view. For two (non necessarily distinct) points p and g € C' let
©(p, q) be the (unique) point on C such that p + ¢ + ¢(p,q) = 0 in C1(C), that is,
P+ q + ¢(p,q) is the divisor of a linear function. If p and q are distinct, ¢(p, q) is
just the intersection point of L n C, where L is the line determined by p and ¢. If
= ¢ then either the tangent intersects C' in a further point ¢(p,p) in which case
the tangent line induces the divisor 2p + ¢(p,p) on C, or p is a so-called inflection
point, and the tangent line gives rise to the linear divisor 3p, see Figure 4[19]

FIGURE 19. The construction of ¢(p, q)

To construct p @ ¢ geometrically, we note that p @ q + pg = p + ¢q so that

P+a+9opq) =0=p@®q+po+¢pq)
so that

P®q = p(po, p(p:q)),
see Figure 420

71. Remark. One can show that p is an inflection point < 3p = pg, i.e.
p@®p@p = 0in C. Furthermore, there are exactly nine inflection points on a cubic

curve [GaCAl 6.4.6].
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Ficure 20. The cubic group law

5. QUASI—COHERENT AND LOCALLY FREE SHEAVES

So far we encountered sheaves in form of the structure sheaf Ox of a locally ringed
space (X, Ox) which was actually a sheaf of rings. In the same way it was important
to pass from rings to modules it will be important to consider sheaves of Ox-
modules. Here, F is a sheaf of Ox-modules if for any open set, F(U) is an
Ox (U)-module, and this module structure is compatible with the restriction maps
in the obvious sense.

1. Example. Let X < P" be a projective variety with S(X) = @ 5, 5(X)q. For
any integer n € Z we let

K(n) = {g | f€S(X)din, g€ S(X)q for some d =0, g + 0}.

For p e X we set
Ox(n)y = {2 € K() | 9(p) +0)

and
Ox(n)(U) = () Ox(n),.
peU

It is easy to see that Ox (n) defines indeed a sheaf, a so-called twisting sheaf. We
can think of its elements as functions of degree n . In particular, Ox(0) = Ox so
that multiplication with f € Ox induces a linear map Ox(n) — Ox(n) and thus
an Ox-module structure. Note that every homoegeneous polynomial of degree n
defines a global section of Ox(n) while there are no global sections of Ox(n) for
n < 0.

2. Remark. Note that for the basic open sets D, in P, Ox(n)(U) = Ox(U) if
U c D,, as Ox(U)-modules. Indeed, we have the isomorphisms
Ox(U) = Ox(n)(U), ¢—¢- i
with inverse
Ox(n)(U) = Ox(U), ¢—p-z;"
For instance, 1/z¢ € Op1(—1)(Uy,)-
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A sheaf of Ox-modules is is locally free of rank 1 if it is locally isomorphic to
Ox. Such sheaves correspond to rank 1 vector bundle, i.e. line bundles. Hence for
every n € Z there exists a line bundle L,,. In fact, this describes the line bundles
(up to isomorphism) completely. Unfortunately, we cannot prove this here, but this
is essentially Lemma 5 for the divisor class group Cl(C) classifies line bundles
on C up to isomorphism.

5.1. Quasi-coherent sheaves. As for modules with sheaves of Ox-modules we
can perform certain algebraic operations such as direct sum of tensor product.
While this is easy to define at presheaf level we usually need to sheafify in order to
obtain proper sheaves.

Sheafification.  Recall that a morphism of sheaves n : F — G was a family
nu : F(U) - G(U) commuting with the restriction morphisms. It is clear that
(kern)(U) := ker(n(U)), (imn)(U) := im(n(U)) and (cokern)(U) := coker(n(U))
are presehaves, but only ker 7 actually defines a sheaf (cf. Exercise [1)i82)).

3. Example. cokern is not a sheaf: Consider the varieties X = A\{0} and
Y = A%\{0} together with the morphism provided by the inclusion ¢ : X — Y,
t(z) = (2,0). Let t* : Oy — 1xOx be the induced sheaf morphism. Note that
Oy (Y) = k[z,y] (which shows that Y is not affine, cf. also Exercise [1}7?). We
cover Y by the open subsets D, and D,,. The maps

Oy (Dy,) = k[z1,22]s, = k[xl,acl_l,xg] - Ox Uz, n X) = k[thl_l]
Oy(Dwz) B k[a:l,scg]mz = k[ml,mgl,xg] — Ox(UJ;Z N X) =0

are clearly surjective so that coker:*(D,,) = 0. However, coker:#(X) #+ 0 for
Oy (Y) = k1, 22] — Ox(X) = k[21,27 '] is not surjective. Hence coker * is not a
sheaf since the zero section over D, does not extend uniquely to a section in coker ¢#.
Put differently, we cannot compute coker # locally — it is not enough to know that
a section vanishes over an open covering to conclude it vanishes altogether. This
stands in contrast to the kernel of a morphism which is in this respect locally
computable.

Similarly, for sheaves of Ox-modules F and G, we get new (pre-)sheaves of Ox-
modules, namely

o (FO®G)U):=FU)®G(U) the direct sum sheaf;
e (FRG)(U):=FU)®oyw)G(U) the tensor product sheaf;
e FY(U) = Homp, ()(Fx(U),O0x(U)) the dual sheaf.

4. Example. (F ®G) is not a sheaf: Consider the sheaves O(£1) over P!.
Then O(—1) ®p O(1) is not a sheaf. Indeed, over D,,,, z; ' ®x; € O(—1)(D.,) Qo
O(1)(D,,) both define the constant section 1. However, these sections cannot be
glued to a global section for O(—1) has no nontrivial global sections at all.

The idea to turn these constructions into sheaves is to sheafify the presheaves.
Recall that for a presheaf F, its stalk was the direct limit

]:P = h_l’I)l ]:(U)’
Uel(p)

where U(p) is a neighbourhood basis of p. In particular, for any germ ¢ € F,, there
exists a section s € F(U) with Op = [U,s], where [U,s] = [V,t] if there exists
W eU(p), W « U nV such that [W,s|w] = [W,t|w].
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5. Definition (sheafification). Let § be a presheaf. Its associated sheaf or
sheafification is the sheaf is defined by
FU) = {o = (¢p)pev | @p € Fp is locally induced by a section}.

Here, being locally section means that for any p € U there exists an open neigh-
bourhood of p in U such that ¢, is the germ of ¢ € F(V) at p.

6. Example. For an affine variety X < A™ consider the presheaf

Rx(U) := {g € k(z1,...,z,) | g(p) £ 0 for all pe U}

of functions on U which are given by fractions of polynomials. Its associated sheaf
R x is the sheaf of regular functions Ox.

The following result is obvious.

7. Proposition [GaAGl 7.1.103]. Let F be a presheaf =
(i) Fp=F, forallpe X;
(ii) if F is a sheaf, then F = F.

We then define cokern or F ®» G to be the sheaves associated with the naturally
defined presheaves.

Quasi-Coherent sheaves. If X = Spec A and M is an A-module we would like
to turn M into a sheaf of Ox-module M. Now Ox(X) = A so that it is natural
to define M(X) = M and M(X;) = M;. This is indeed possible but in order to
stress the analogy with the structure sheaf we make the following

8. Definition (quasi-coherent sheaf).

(i) Let M be an A-module. Over X = Spec A we define a sheaf of Ox-modules
by

M(U) = {p = {©p}p | p € M, is locally of the form ¢ = m/a, me M, a € A}

with the by now intuitively clear notion of localness.

(ii) It is straightforward to see that M defines a sheaf. More generally we say
that a sheaf of Ox-modules F over a scheme (X,Ox) is quasi-coherent if
X can be covered by open affine subsets U; = Spec A; © X such that F|y is
of the form M; for some A-module M,;.

9. Remark. A quasi-coherent sheaf is called coherent if the M, are finitely
generated A;-modules.

10. Lemma. If F is quasi-coherent, then F|y is of the form My for any open
affine subset U = Spec Ay .

Proof. See [Hal, I1.5.4]. O

The same proof as for the structure sheaf (cf. Proposition [lf7]) applies to show

11. Proposition [GaAG] 7.2.2]. Let X = Spec A and M be an A-module =
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(i) For every p € X we have Mp = M,, that is, the stalk of M at p is the
localisation of M at p; }
ii) for every fe A, M(Dys) = M. In particular, M(X) = M.
f f

12. Examples.

(i) The structure sheaf is coherent. True by design for Ox(U) = A for
U = Spec A.

(ii) A coherent skyscraper sheaf. Let X = P! and p = [0: 1]. We let K, be
the sheaf defined by IC,,(U) = k if p e U and 0 else. The stalks are (K,), = k
if ¢ = p and 0 else whence the name skyscrpaer sheaf. We claim that IC,
is coherent. Indeed, KCp| Dy, = 0, the sheaf given by the trivial module over
Dy, = Speck[z]. On the other hand, Ky|p,, = M, where M = k is the
k[xz]-module given by f(z)-a = f(0) - a.

(iii) A sheaf which is not quasi-coherent. Let X = A} and F be the sheaf
associated with F(U) = Ox(U) if 0 ¢ U, F(U) = 0 else. Then F, = Ox,
if p + 0 and @0 = 0. It follows that F has no nontrivial global section:
Indeed, if s € @(X), then sg = 0. By definition, this means that s vanishes
on a neighbourhood of 0 and vanishes identically for X is irreducible. If
F = M were quasi-coherent, then M = 0 by the previous proposition, and
thus F (U) = 0 for any open set, a contradiction.

Quasi-coherent sheaves form a particularly nice class of sheaves of Ox-modules
for it is compatible with all natural operations on sheaves which also shows that
quasi-coherent sheaves exist in abundance.

13. Lemma [GaAGl, 7.2.7], [Hal I1.5.5, 11.5.7]. Let X = Spec A.
(i) For any two A-modules M and N there is a 1-1 correspondence betwenn
morphism of sheaves M — N and A-linear maps M — N.
(ii) A sequence of A-modules 0 — My — My — M3 — 0 is exact < the sequence
of Ox-modules 0 — M, — My — M3 — 0.
(iii) For any two A-modules M and N, M@®N = (M @®N)™.
(iv) For any two A-modules M and N, M@ N = (M ® N)~.
(v) For any A-module M we have M~ = (MY)™.
In particular, kernels, cokernels, direct sums, tensor products and duals of quasi-
coherent sheaves are again quasi-coherent on any scheme, and the functor M —
M gives an equivalence of categories between the category of A-modules and the
category of Ox -quasi-coherent sheaves on X = Spec A.

Proof. This follows directly from the localisation properties of modules. For in-
stance, localising an A-linear map indueces a map at stalk level of the associated
quasi-coherent sheaves. Furthermore, a sequence of A-modules is exact < all lo-
calised exact sequence are exact, that is, the induced sequence of quasi-coherent
sheaves is exact at stalk level etc.. O

Another important example is this.

14. Ideal sheaves.. We say that . : X — Y is a closed immersion if

e | induces a homeomorphism onto a closed subset of Y’;
e the induced morphism i : Oy — 1,Ox is surjective.
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The kernel ker (* is called the ideal sheaf of X and is written Z|x Y-

In the affine case where X = SpecB and Y = Spec A this is equivalent to a
surjective ring morphism A — B, that is, B =~ A/a and we recover the notion of
a closed affine subscheme as defined in Example 5[16] (iv). In the general case, the
ideal sheaf fits into the exact sequence

0 Ilx)y Oy 14Ox —= 0.

As a kernel of a quasi-coherent sheaf, 7|y y is itself quasi-coherent. Locally, where
T|x/y = a etc. the restricted exact sequence is given by an exact sequence of A-
modules

0 a A B 0.

In particular, X has an affine cover of the form Spec A/a.

Furthermore, quasi-coherence is also compatible with two standard functorial con-
structions. We considered already the direct image or push-forward f,F of a
sheaf F over X induced by a morphism f : X — Y of schemes. It is the sheaf over
Y given by

FF (V)= F(fTHV)).

There is also a dual operation to the direct image, namely, the pull-back of a sheaf
G over Y. The definition requires some care, and we first introduce the inverse
image sheaf f~'G over X by

FGW) = i G(U).
Vof(U)
In analogy with the definition of germs (cf. Definition this means that any
@ e f71G(U) is given by an equivalence class [V, f], f € G(V), where [V, f] = [V, f]
< there exists U ¢ W < V A V such that f|ly = flw in G(W). This is indeed a
sheaf with stalks f~1G, = G(f(p)- Moreover, f71G is a sheaf of f~!Oy-modules. In
order to get a sheaf of Ox modules we need to tensor with Ox seen as a f~1Oy-
module via f#: Oy — f.Ox, namely

[*G = [ F @10, Ox
(note that for ¢ = [V, f] € f~1Oy(U), U < f~1(V) so that f#(g)|y € Ox).

15. Proposition [GaAGl 7.2.9, 7.2.11], [Hal 11.5.8]. Let f : X —» Y be a
morphism of schemes, and let F and G be quasi-coherent schemes over X and Y
= f«F and f*G are quasi-coherent schemes over Y and X respectively. More
precisely, if N is a B-module and M an A-module, where X = SpecB and Y =
Spec A and f is given by a ring morphism A — B = fo(N) = (N4)~ and f4(M) =~
(M ®4 B)~, where Ns means N considered as an A-module.

Proof. We simply remark that if X = Spec B and Y = Spec A are affine schemes,
and 7 = M, G = N, then fF = M seen as an A-module via flrA=0y(Y) -
B = Ox(X), while f*G = N ®4 B. For the general case, see [Ha, 11.5.8]. O
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5.2. Locally free and invertible sheaves. Next we turn to a more restrictive
class of sheaves. These have a nice geometric interpretation in terms of vector
bundles, but lack the flexibility of (quasi-)coherent sheaves.

Vector bundles. Again let X be a scheme over k.

16. Definition (locally free sheaf). A sheaf of Ox-modules F is locally free
of rank r if there exists an open cover {U;} such that F|y, = @;_, O(U;) for all
7.

In particular, a locally free sheaf is coherent. To interpret locally free sheaves in
more geometric terms we introduce the notion of a vector bundle of rank r on
a scheme X. This is a k-scheme FE together with a k-morphism 7 : £ — X and
an open covering U; of X such that

e there exist isomorphisms ¥, : 7~ (U,) — U, x A7 over Uy, (local triviality

of E over U,);

e the automorphisms V.5 := ¥, o \IIE1 are linear over U,g = Uy N Up,
see also Figure 5 The set 7—1(p) is called the fibre over p. It is an r-dimensional
k-vector space.

P

NS
b

/&E%/X UL

FIGURE 21. The trivialisation of a vector bundle

17. Proposition [GaAGl| p.132]. There is a 1 — 1-correspondence between vector
bundles m : E — X of rank r and locally free sheaves F of rank r over X.

Proof. If m# : E — X is a vector bundle, then we define Fy = {k — morphisms s :
U — E | mos = Idy}. This is a sheaf (the sheaf of sections of E) and the
isomorphism ¥ : E|y, — U, induce the isomorphism with @ O(U;). Conversely,
isomorphims ¥, : Fy, — @ O(U,) induce k-linear morphisms ¥,5 = ¥, 0 \1151
between the stalks so that we can glue the local trivial models U, x A} and Ug x A,
by ¥,g3. O

Again, the standard operation on quasi-coherent sheaves work also in the more
restricted category of locally free sheaves. In essence every linear algebraic operation
on modules gives rise to a corresponding operation on vector bundles resp. locally
free modules. Almost by design we have for instance the
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18. Proposition [GaAGl| 7.3.4]. Let F and G be two locally free sheaves of rank
r and s respectively. Then the following sheaves are also locally free:

(i) FDG of rank r + s;

(i) F®G of rank r - s;
(ili) FY of rank r.
If f : X =Y is morphism, and G is a locally free sheaf overY , then f*G is a locally
free sheaf over X (the direct image of a locally free sheaf is not free in general).

19. Remark. Natural operations such as taking the kernel of linear morphisms
between vector bundles do not give rise to new vector bundles. Consider, for in-
stance, a matrix map A : A" — A" whose entries depend polynomialy on some
underlying variables x1, ..., z,. Generically, A will be invertible so that its kernel
is trivial, but at some points it will have a nontrivial kernel. The kernel sheaf looks
like a skyscraper sheaf which cannot be locally free for it does not have locally
constant rank. It is, however, still (quasi-)coherent which is why quasi-coherent
form a good category to work with.

Differentials and the tangent bundle. Next we want to investigate a special
vector bundle on smooth schemes: the tangent bundle.

20. Definition (relative differential). Let f : X = Spec B — Y = Spec A be
a morphism of affine schemes. We define the B-module of relative differentials
Qx vy to be the free B-module generated by the formal symbols {db | b € B} subject
to the relationship

[ d(bl + bg) = dbl + dbg for bl, b2 € B,

(] d(bl . bg) = dby - by + by - dby for bl, by € B;

e da=0forae A.

The first two properties say that d : B — {lx/y is an A-linear derivation.

21. Example. If A =k then we write Q2x , simply Qx. For instance, if X = A}
then Qur is simply the B = k[z1,...,2,]-module generated by dzy,...,dz,. If
X < A7 is an affine variety with coordinate ring k[x1,...,2,]/(f1,..., fr), then
still the dz; generate {2x but now we have the additional relations df; = 0. In fact,
Qx = k[z1,...,2,]/(df1,...,dfr) where df; = >, 0y, f;dz’. In particular, if p is
a closed point of X so that we can consider k as an A(X)-module via evaluation

f = f(p), then
QX ®A(X) k= <dl‘17 cee ,dl‘n>/(2 6wa](p)d:vl)

is just T X, the dual of the tangent space of X.

In order to define differentials for a morphism f : X — Y between general schemes
we need an alternative characterisation of 2y y which stresses the relationship with
tangent spaces.

22. Lemma [GaCAl 7.4.4]. Let A — B be a morphism of rings. Leté : B&a B —
B given by 6(r1 @ r2) = r172 and let a = ker6 < B®a B be the kernel = a/a? is
an B-module and

Qp/a = a/a’.
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Proof. The B-module structure on a/a? is given by

2 (b®c):=(r-b)@®c=b®(x-c).
Note that if b@ cea, thena-a3z- (b®c)—a®(z-b) =bQc - (2®1—-1®x)
which implies the second equality. We define a B-linear map by

Qpa —a/a®, db—1®b—b®1.

To define its inverse we consider the B-module M := B @® Qg s which becomes a
ring under

(b@dc) - (b@® dé) := bb @ (bdé + bdc).
Then B x B — M given by (b,¢) = be@®b-dc is an A-bilinear morphism giving rise
to amap g : B®4 B — M. By design, g(a) < Qp/4 and since g(a®) = 0 we get an
induced morphism a/a? — Qp /a- In fact, it is easy to check that this is the inverse
of the morphism Qg4 — a/a®. O

In scheme theoretic terms with X = Spec B and Y = Spec A the ring morphism
A — B corresponds to a scheme morphism X — Y. Then Spec B&a B = X Xy X
and 0 : B®4 B — B corresponds to the diagonal morphism X — X xy X. It
follows that axy ¢ B®4 B is the ideal of the diagonal morphism A : X ¢ X xy X.
This motivates the

23. Definition (sheaf of relative differentials). Let FF: X — Y be a
morphism of schemes, and ax = Za(x)/xx,x be the ideal sheaf of the closed
immersion X — X xy X. Then

QX/Y = Aﬁ(ax/c@)
is called the sheaf of relative differentials. Again we simply write Qx if Y =
Speck.

This shows that (2x/y is a globally well-defined object which coincides with Defi-
nition 520 in the affine case. In particular, it is quasi-coherent.

As in the case of n-dimensional k-varieties we can speak about smooth n-dimensional
k-schemes of finite type which are schemes with smooth affine neighbourhoods. This
means that if U = Speck[z1,...,2m]/{g1,..., gy then the matrix (¢;g;) has rank
m —n.

24. Proposition [GaAG] 7.4.11]. An n-dimensional k-scheme X of finite type is
smooth < Qx is locally free of rank n.

Proof. <) If Qx is locally free, then the fibre at p, which is 7)) X, is n-dimensional.
Hence p is a smooth point.

=) We know that Qx ®ax) kp = {dx1,...,dwm)/ (D, 0z, fj(p)dx;). Now if p is a
smooth (closed) point, then this is n-dimensional by assumption, that is, 0., f;(p) is
of maximal rank n—m. As this is an open condition, it will be of maximal rank near
p. Choosing coordinates appropriately, Qx ®a(x) kq has dz1(q), ..., dzm—n)(q) as

a basis for points ¢ in that neighbourhood so that Qx(U) = @;" " O(U)dz;. O

25. Definition (tangent sheaf). We call Tx = QY the tangent sheaf. It is
quasi-coherent, and if X is smooth, then Tx is locally free. In this case, we call Tx
the tangent bundle of X.
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26. Remark. This definition shows the flexibility of our geometric setup: While
in differential geometry, smoothness is crucial to define the tangent bundle, we
always have a quasi-coherent tangent sheaf for a k-scheme X (under mild additional
assumptions such as separateness which garantuee that X — X xgpecr X is a closed
immersion).

Invertible sheaves and line bundles. Next we are going to study these concepts
in the easiest case, namely for rank r = 1.

27. Definition. An invertible sheaf is a locally free sheaf of rank 1. The
associated vector bundle £ is called a line bundle.

28. Example. Let X be a smooth k-scheme of dimension n. Then wy = A"Qx
is invertible and called the canonical line bundle.

Note that the tensor product between two line bundles is again a line bundle.
Furthermore, £L ®p, LY — Ox given by evaluating an element in £ on LV gives
an isomorphism, that is, £¥ =~ £~! whence the name “invertible sheaf”. The set
of line bundles therefore carries a natural group structure.

29. Definition. We call
Pic (X) = {line bundles on X}
the Picard group of X.

In the following we will focus on the case of smooth curves. Our goal is to show
that if X = C is a smooth curve, then Pic(X) = CI(C).

If £ is a line bundle, its sheaf of sections (which we also denote by £) is invertible,
but there are also other interesting sections. Let K¢ be the constant sheaf of
rational functions on X, that is, Xo(U) = K¢.

30. Definition (rational sections). A rational section of £ is a section of
the sheaf £ ®o. Kc.

In fact, £ ®o, K¢ is the constant sheaf Ko for C is covered by open sets with
L(U) = Oc(U) which define a basis of the topology so that £ ®p. Ko(U) =
Oc(U) ®o. )y Kc(U) = Kc. In particular, global rational sections always exists;
take for instance the constant rational function 1. Note, however, that this does
not give rise to a constant section (which would trivialise £). In fact, the local
isomorphisms L£(U) = O¢(U) will carry 1 to a nontrivial rational sections which in
general will have zeroes and poles, see also Step 2 in the proof of Theorem 5[32}

With any rational section s we can associate a divisor as follows. Upon choosing a
trivialisation on some open set U, s|y corresponds to a rational function f € K¢,
and we let (s) = (f). If f is a rational function obtained by another trivialisation,
then f = g - f, where ¢ is a nowhere vanishing regular function (it is essentially

given by U,; € GL(k,1) = k*). In particular, (g) = 0 so that (f) = (g) + (f) = (f).

31. Example. Let C = P! with homogeneous coordinates [z; : x2]. The
(regular) section s = xox; € O(2)(C) has divisor (s) = [1 : 0] + [0 : 1] while
s =1/z% € O(—1)(C) has divisor (s) = —2[0: 1].

We call a divisor D = >, a,p effective < a, > 0. We also write D > 0 for an
effective divisor, and define D > D’ to means D — D’ > 0.
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32. Theorem [GaAG| 7.5.9]. Let C be a smooth curve = there is an isomorphism
of abelian groups

Pic(X) — Cl(X), L+ (s) for any rational section s € £L ®o K¢

with inverse
Cl(X) —» Pic(X), D~ Lp,

where Lp is the invertible sheaf
Lp(U) ={feKc|((f)+D)v =0}
Proof. We proceed in three steps.

Step 1. The maps are well-defined. For any divisor D = > a,p, Lp is indeed an
invertible sheaf. Fix a point p in the support of D and an open neighbourhood U
which contains p, but no other point in the support of D. Since C' is smooth its
cotangent space T’ C' is one-dimensional and is generated by some linear function
¢p which vanishes at p with multiplicity 1. Restricting U further if necessary we
may assume that p is the only zero of ¢,. An isomorphism Oc(U) — Lp(U) is
then given by multiplication with ¢,”. Moreover, if D is linearly equivalent to D,
that is, D = (¢) + D, then multiplication by ¢ yields an isomorphism £p — £ oy

Step 2. The maps are invertible to each other. Let s be a rational section of
L. Then f e LU) — f/s € O )(U) = {p € Kx | (¢ + (s))|lv = 0} induces an
isomorphism between £ and Oy, hence Pic(C') — CI(C) — Pic(C) is the identity.
On the other hand, consider the invertible sheaf £p. Consider the rational section
of L£p induced by the constant function s = 1. We claim that (s) = D. Indeed, if U
is a small neighbourhood containing a single point p of the support of D with linear
function ¢, whose differential spans T,’C (cf. the first step), then the constant
function 1 corresponds to the local section ;" .

Step 3. The maps are group morphisms. 1f s and s are rational sections of L and L
respectively, then s3 is a rational section of L ® L whose divisor is (s5) = (s) + (§).

O

33. Remark. More generally, this isomorphism holds for smooth schemes and
even more general schemes, cf. [Hal I11.6.11 and 14].

34. Example. Consider an effective divisor D on a curve C. For purposes
of illustration we assume D = ap with a € N and p € C a closed point (the
general case works similarly). Considering D = Spec A as a subscheme of C' (where
A =~ k[z]/(z*) = k* as a k-vector space, cf. Remark we get a closed immersion
t: D — C sending p to p. The induced morphism ¢* : Oc — 1,Op is stalkwise
given by i} = 0if ¢ 4 p and JA([U, f]) = [U, Yo 9 (p)a?], where f € Oc(U) and
f9) is the j-th formal derivative of the polynomial function f. It follows that the
ideal sheaf Zp,c = ker ! is given by the stalks (Zp/c)q,> q € C consisting of germs
[U, fl, f € Oc(U), such that f > 0if p ¢ U and (f) —ap = 0 if ¢ = p, the latter
condition being equivalent with f having a zero of order equal or greater than a.
In any case, (f) — D = 0 so that

Ipjc = Lp,
and this holds for any effective divisor (cf. also [Hal II1.6.18].
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5.3. Riemann-Roch. As a last application of the ideas discuss above we prove
the Theorem of Riemann-Roch.

Cohomology of sheaves. An important feature of sheaves is their associated
cohomology theory. This gives rise to natural invariants of the underlying space.
Again, the formalism applies to any topological space X and sheaf F, but of course,
we are mainly interested in the case of schemes and (quasi-)coherent sheaves.

We start with some definitions for a general topological space X. Let U = {U,}
an open covering of X. Further, let N (i) be the nerve of U, which we define as
follows. The elements U, of U are called the vertices. Any choice of ¢ + 1 subsets
Uy, ... U, span a g-simplex o = (Up,@,U,). The open set Uy n...n U, = |0
is called the support of the simplex o. Then the nerve N(U) is the set of all
g-simpleces, q = 0.

Next let F — X be a sheaf. A ¢g-cochain of U/ with coefficients in the sheaf F
is a function f which assigns to every g-simplex in N (i) a section f(o) € I'(|o|, F).
We denote the set of g-cochains by C4(U, F), so

CO(UJJ:) = H]:(Uoc)

C'U,F) = [ [ FUa 0 Us)
a+f

This set inherits the natural algebraic structure of F, so if F is a sheaf of abelian
groups, (f + g)(0) = f(o) + g(o) € T(|o|, F). We define a group morphism
81 CU U, F) — CTH U, F),
the so-called coboundary operator, for f € C(U,F) and 0 = (Uy,...,Uqs1) €
N(U) by
q+1

§(£)(0) = D (=1 pijo) (f (U0, Uic1, Uita, .., Ugi1)) € T(Ug A ... A Uy, F),
i=0

where p;|,| denotes the restriction map from I'(Up n U1 0 Ujy1 ... 0 Ugy1, €) to
I(|o|,F). Then C4(U; F) becomes a (differential) complex, i.e.

89t 0 67 = 0,
which is a straightforward, if tedious, computation. For sake of simplicity we often
write ¢ instead of §¢. Next we consider the subgroups

Z9U,F)={feCiU,F)|df =0} =kerd,
the ¢-cocycles, and
BYU,F)=067tCT (U,) =im s,
the so-called g-coboundaries. Since §2 = 0, BY — Z9, and the quotient group

29U, F)/B1U, F), q¢>0
z° (u7 3)7 q= 0
is the g-th cohomology group of i/ with coefficients in the sheaf F. These

cohomology groups obviously depend on the covering U, but we would like to turn
this into an invariant of the underlying topological space. For H° ths is easy.

HIU, F) = {

35. Lemma (0-th cohomology and global sections). For any covering U of
X we have
HU,F) =T(X,F).



168 UNIVERSITAT STUTTGART

Proof. A zero-cochain f € C°(U, F) assigns to each U € U a section f(U) € T'(U, F).
By definition, f € HY(X,F) < 6f = 0. If we let Uyp := U, n U denote pairwise
intersections for U, and Ug in U, the latter condition means that

6f(Uap) = f(Ua)lv.s — f(Up)
that is, if Uag + & then the local sections f(Uyg) € I'(Uyp) agree on intersections
and there exists a global section f € I'(X, F) which restricts to f(U,). Conversely,

a global section f € T'(X,F) obviously produces local sections f(Uy) = fly. in
I'(Uy) which agree on the overlaps. O

Uap — 07

To get rid of this dependence for higher cohomology we introduce the refinement
of U = {U,} by the covering V = {V,}. This is a mapping px : ¥V — U such that
Vo © u(Vy) for all V, € V. Put differently, any vertex of ¥V must sit inside some
vertex of U. The map p is called the refining map. It induces a map

w:ClWU,F)— CIV,F)
as follows. If f € CYU,F) and 7 = (Vy,..., V) is a g-simplex in N(V), then
1) Vo, -, Vy) = f(u(Vo), - - ., u(Vy))]7|- Note that & + Vo ... n Vg < u(Vo) n
.. (V) so that (u(Vo),. .., u(Vy) is a g-simplex of N(U). Clearly, u is a group
morphism and commutes with §, i.e. pod = d o pu. It therefore descends to a group
morphism
p*  HI(U, F) — HYV, F).

Although a refinement map is not uniquely determined, its induced map at coho-
mology level is:

36. Lemma. IfV is a refinement of U, and if p:V - U and v :V — U are two

refining maps = p* = v*.

Proof. Let ¢ = 0. An element f € H°(U,F) is a collection {f(U,)} such that
fWUa)lv.s = f(Up)|u.,- Hence u(f) is the collection {f(1(Va))}. Under the identi-
fication with global sections, both {f(Uy)} and {f(u(V4))} glue to the same global
section, and similarly for v. Hence p* = v* = 1d.

Let ¢ > 0. We need to show that if f € Z%(U,F), then v(f) — u(f) = 50(f)
for some §(f) € C4~1(V,F). Modulo coboundaries, this means that v = y, i.e.
v¥ = p*. We define 6 : C1(U,F) — CTTH(V, F) as follows. If f € CI(U,F) and
7= Vo,...,Vg—1) € N(V), then

0N Vo, Vo) = Z_](—l)jf(M(Vo), (V) v (Vi) v (Vo) iz -
§=0

Now this has at least on p- and one v-entry in every summand. Taking the differ-
ential, a short computation on 7 = (Vp,...,V;) shows that

80(f)(Vos -, Ve) = DL (=176 f (u(Vo), - -, Vi), v (Vi) ., v(Vg))ljoy
j=0
+VH() (1) = 1* ()7,

whence the assertion if §f = 0. O

Now we can define a partial ordering on the set of coverings as follows. We write
Y < U if V is a refinement of Y. By the previous lemma there is a well-defined
map pyy @ HI(U,F) — HI((V,F) which is transitive, i.e. pyw o pyy = puw, and
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such that pyy = 0. Note that the set of coverings is directed, that is, for any two
coverings Y and V one can find a covering W such that W < U and W < V (take
for instance as vertices in W the intersections of the vertices in & and V). We can
therefore define
HY(X,F) =lim HI(U, F)
u

which by definition is the group obtained by taking the product @,, H4(U, F) and
by identifying two elements f € H1(U, F) and g € H1(V, F) if there exists a common
refinement W of U and V such that the images of f and g in HY(W, F) agree. In
particular, for each covering U there is a natural map H?(U,F) — H4(X,F). Of
course we can replace the set of coverings of X by any cofinal subset of coverings,
that is a subset which for any given covering U contains a refinement V. The
cohomology thus obtained is usually referred to as Chech cohomology. If we wish
to distinguish it from other cohomology theories we sometimes write H9 instead of
H for emphasis.

Apart of attaching to a (smooth projective) scheme X obvious invariants such as
HY(X,0x), many classically defined numerical invariants have a cohomological
intepretation. For instance,

e the arithmetic genus which we defined in Example [@l54] namely p, =
dimy H' (X, Ox), see [GaAG] Exer.I11.5.3];

e the geometric genus which is defined as p, = dim, H°(X,wx);

e the Hodge numbers h?? = dim H9(X, Q%) where Q% = APQx. Note
the symmetry A4 = B~ 2"7P for n = dim X which is a consequence of
the Serre duality H?(X,QP) = H" (X, Q" P)V. More generally, Serre
duality reads

HYX,F) =~ H" (X, wx @ F)

where F is a locally free sheaf [Hal II1.7.7 and 7.13] (taking F = QX gives
the case just defined).

o If X is a projective subscheme and F a coherent sheaf, then the Euler
characteristic of F is defined as

X(F) = Y (~1)?dimy, HY(X, F)

(the assumptions on X and F ensure that this is indeed a finite integer).
The Euler characteristic is an additive invariant, i.e. if 0 - 7 — F —
F" — 0 is a short exact sequence of coherent sheaves on X we have x(F) =
X(F') + x(F") [Hal Exer. II1.5.1].

Statement and proof of Riemann-Roch. For a smooth projective curve,
Qx = wx is an invertible sheaf and Serre duality reads as

HY X, L)Y =~ H'(X,wx ®L").

As a first consequence we deduce

37. Proposition. For a smooth curve C' we have
pa(c) = pg(c)~
This number will be therefore simply called the genus of C' and denoted by g.

Proof. By Serre duality, p,(C) = dim H'(X, 0) = p,. O



170 UNIVERSITAT STUTTGART

In the following let
(D) = dim H°(X, Lp)

be the dimenison of the space of holomorphic sections.

38. Lemma. Let D € Div(C). If (D) + 0 = degD < 0 with equality <
,CD = Ox.

Proof. If (D) > 0 then there exists f € H°(X, Lp) such that (f) + D > 0, that is,
—D is linearly equivalent to an effective divisor. Since deg descends to Cl, —deg D
equals the degree of an effective divisor and is therefore positive. If furthermore
deg D = 0, then D is linearly equivalent to an effective divisor of zero degree which
can only be the zero divisor. O

We let K denote the so-called canonical divisor, that is, the divisor of wx. We
can now state the

39. Theorem (Riemann-Roch) [Ha, IV.1.3]. Let D € Div(C), where C is a
curve of genus g =

I(D)—l(K—D)=degD+1—g.

Proof. The divisor K — D corresponds to the invertible sheaf wx @ £},. Since X is
projective we can apply Serre duality to conclude that (K — D) = dim H*(X, Lp).
We have this to show that the Euler characteristic

X(Lp) =degD +1—g. (12)

This immediate for D = 0 for {(O) = 1, the curve being projective, and g =
dim H'(X, Ox). Since any divisor is a finite sum of (not necessarily distinct points)
we only need to show that if D is a divisor, the formula is true if and only if it is
true for D + p. As we have observed in Example 5[34] we have the exact sequence

0 L, Oc kp 0

where k(p) denotes the skyscraper sheaf whose only nontrivial stalk is k at p.
Tensoring with Lp, gives

0——Lp—>Lpyp—>ky—0

This preserves exactness for Lpy, is locally free as well as k(p) for it is of rank 1.
Since the Euler characteristic is additive and x(k,) = 1, we get

X(Lp+p) = x(Lp) + 1.

On the other hand, deg(D + p) = deg D + 1, so that formula is true for D <
it is true for D + p. O

40. Some easy applications.

(i) On a curve of genus g, deg K = 2g — 2. Indeed, I(K) = p, = g and [(0) = 1,
whence 1 —g=deg K +1—g
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(ii) A curve C is rational < C is birational to P'. By Example we know that
the arithmetic genus is a birational invariant and p,(P*) = 0 so we only need
to show the converse, assuming that g(C) = 0. Consider the divisor D = p—gq
for twi distinct (closed) points on C. In particular, deg(K — D) = —2, whence
(K — D) = 0. Applying Riemann-Roch yields {(D) = 1; since deg D = 0
we must have D ~ 0, or equivalently, p ~ ¢, by Lemma 5[38 So we kneed
to show that a curve is rational if there exist two distinct points which are
linearly equivalent. Indeed, if p ~ ¢ then there exists a rational function
f e K(X) with (f) = p—q. In particular, f is not a constant and gives rise to
a field extension k(f) =~ K(P') = K(X). This corresponds to a rational map
¢ : X — P! with o!([1: 0]) = p. But this means that [K(X) : K(PY)] =1
so that K(P') = K(X), that is, X is birational to P!, see [Hal Chpater I1.6],
in particular [Hal, I1.6.8 and I1.6.9]. In fact, it follows from our discussion on
curves in Section [B3-4] in particular Proposition BJI10] and Corollary [3[I14]
that a projective smooth curve which is birational to P! is actually already
biregular to P! (see also [Hal 11.6.7]). Since the divisors p and ¢ on P! have
the same degree, they are actually linearly equivalent for Cl(P') = Z by
Proposition [l67] so that a curve is actually rational if and only if any two
points are linearly equivalent.

(iii) Moving up the genus by one we say that a curve is elliptic if ¢ = 1. On
an elliptic curve, we have the by definition deg K = 0 and [(K) = 1. In
particular, K must be trivial in view of Lemma 538

APPENDIX A. RUDIMENTS OF CATEGORY THEORY

We discuss the basic notions of category theory. For a further development see for
instance [GeMa).

1. Definition (category). A category C consists of the following data:
(i) A class of objects Ob(;
(ii) for any two objects A, B € ObC a set Morc(A, B) of morphisms. We denote
an element of Mor¢ (A, B) usually by A — B.

Furthermore, for any three objects A, B and C € C there exists a map
o: Mor¢(A, B) x Mor¢(B,C) — More(A,C), (f,g)—gof
such that Mor¢ (A, B) is a monoid, i.e.
(i) o is associative, i.e. (go f)oh = go (foh);
(ii) for all A € ObC there exists a morphism Id4 € Mor¢ (A4, A), the so-called

identity of A such that for all B € ObC and for all f € Mor¢(A4; B) and
g € More(B, A) we have

folda=f and Idgog =g.

To simplify the notation we often write Mor instead of Mor¢. A category C is small
if ObC is a set.

2. Definition (isomorphism). Let C be a category. A morphism f €
Mor¢ (A, B) is called a (categorical) isomorphism if there exists g € More(B, A)
such that go f = Id4 and fog = Idp, that is, f has a two sided inverse. In this case
we also write g = f~1. If C is small, then being isomorphic defines an equivalence
relation on ObC and we denote by Iso(C) the set of equivalence classes.

3. Examples. (see also [GeMa), Section II.§1.5] for examples.)
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(i) The basic example is the category SET of sets with maps as morphisms. Note
that there is no set of sets (cf. Russell’s paradoxon) which is why the objects
form a class, not a set. On the other hand, Morggr(A4,B) < A x B is of
course a set. Isomorphisms are just bijective maps. Further examples in this
vein are given by algebraic categories such as the category of abelian groups
ABG or A-modules MOD 4 with the corresponding notion of (iso)morphisms
(group morphisms, A-linear (bijective) maps, etc.) or geometric categories
(e.g. category of varieties with (bi)regular maps as (iso)morphisms). This
also explains the general notation A — B for morphisms.

(ii) More exotic examples include the catgeory C(I) of a partially ordered set
I, where ObC(I) = I, and Morc(s)(4,7) consists of one element if i < j
and is empty otherwise. In particular, More(r)(4,4) = {Id;} and an element
f € More(i,7) is an isomorphism if and only if ¢ = j and f = Id;. If X is
a topological space we can consider the category TOP x. Here, the objects
are the open subsets of X (a subset of the power set of X), and Mor(U, V) is
the inclusion if U < V and the empty set otherwise. Again, Mor(U,U) = Idy
and f € Mor(U,V) is an isomorphism if and only if U = V and f = Idy.
Finally, we can consider the category SHEAF x whose objetcs are sheaves on
X, and Mor(F,G) are sheaf morphisms. Here, the notion of isomorphism is
the catgeorical one, i.e. ¢ : F — G is an isomorphism of sheaves if and only if
it has a two sided inverse (cf. Definition [1[77). The definition of injective and
surjective sheaf morphism was designed in such a way that an isomorphism is
precisely a morphism which is injective and surjective, cf. Exercise [L}{86|

4. Definition.  An object U of a category is called universally repelling
(attractive) if for any other object A there exists exactly one morphism U — A
(A — U). For sake of brievety we also call U simply universal.

It follows immediately from the definition that if U is universal, then Mor(U,U) =
{Idy}, and U is unique up to unique isomorphism.

5. Example. Let My,..., M, be a finite number of A-modules. We construct
a categaory C as follows. Take r-multilinear maps from f : My x ... x M, — N,
where N is some further A-module, as the objects of our category C. For two objects
fiMyx...xM.,— N,g: M x...x M, — L, let a morphism f — g € Mor(f, g)
be an A-linear map h : N — L such that g = [ o f. Then the tensor product is a
universally repelling object for C.

We can also consider “maps” between categories.

6. Definition (functor). For two categories C and D we call F : C — D a
functor an assignement which associates with any object A in C an object F'(A) in
D, and for any two objects A and B a map Mor¢(A, B) — Morp(F(A), F(B)) (F
is covariant) or Mor¢ (A, B) — Morp(F(B), F(A)) (F is contravariant) taking
f to F(f), and having the following properties:

(i) F(Ida) = Idp(ay;

(ii) F(fog) = F(f)oF(g) (F covariant) or F(fog) = F(g)o F(f) (F contravari-

ant);
(iii) A presheaf onb X can be regarded as a contravariant functor Top y — AbG.

7. Remark. If F' is a covariant (contravariant) functor, we often write fi (f*)
for F(f).
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8. Examples.

(i) The basic example of a covariant functor is the so-called forgetful functor
from a category C to Set which associates with say an A-module its underlying
set,and with an A-linear map its underlying set theoretic map.

(ii) The assignement which takes an A-module M to its dual module MY, and
an A-linear map f : M — N to the dual map f¥ : N¥Y — MV defined by
FA)(m) = A(f(m)) for all m € M is a contravariant functor.

(iii) Consider the category TOP, of pointed topological spaces (X, a) as objects
together with continuous maps between them as morphisms, i.e. f: (X,a) —
(Y, b) satisfies f(a) = b. The assignement (X, a) — 71 (X, a) = the fundamen-
tal group of X, f: (X,a) — (Y;b) — fy : m(X,a) — m(Y,b) is a functor
between TOP, and GRP, the category of groups.

A useful notion of “isomorphic” categories is this.

9. Definition (equivalence of categories). Two small categories C and D are
(covariantly) equivalent if there exists a covariant functor F' : C — D such that
F

(i) induces a surjective map on isomorphism classes Iso(C) — Iso(D). Put dif-
ferently, for any object y in D there exists an object x in C with F(z) is
isomorphic with y.

(ii) full and faithful, that is, for any two objects x1, o in C the induced map
F(z1,z2) : Mor(z1,x2) — Mor(F(x1), F(x2)) is surjective and injective.

An analogous definition applies for contravariant equivalent categories.

10. Example. The category of affine varieties over k is equivalent with the
category of finitely generated k-algebras without zero divisors (cf. Corollary [L}f142]).

APPENDIX B. RECAP ON FIELD EXTENSIONS

A field extension is an embedding k < K of the ground field &k into some bigger
field K (note in passing that any nontrivial k-linear map between fields is ncessarily
injective). In particular, we may view K as a k vector space; it is customary to
write K /k for the field extension and [K : k] for dimy K, the degree of the field
extension, but we will not do that. There are several types of field extensions which
are important for us. A good reference is [Bo].

1. Definition (finite and algebraic field extensions). A field extension
k < K is finite if the dimension dimy K < +00. Moreover, k c K is algebraic if
for any o € K there exists f € k[z] such that f(a) = 0.

2. Proposition. A finite field extension is algebraic.

Proof. Indeed, if a € K, then there must be an n so that {1,a,a?,...,a"} becomes
linearly dependent over k, that is a™ = 22:01 a;a’. We let k[a] denote the subring
of K generated by k and «, that is, k[a] = {ZZ:OI a;x' | a; € k}. Since this
is an integral domain and k[z] Euclidean, so in particular a PID, the kernel of
k[z] — k[a], X — «, must be a principal ideal, so ker = (f) for an irreducible
element f. In particular, (f) is maximal so that k[a] = k(a) := Quotk[«] is
actually a field. Moreover, dimy k(«) = deg f. Indeed, k[x] is Euclidean so that
g = qf + r with uniquely determined polynomials degr < deg f. It follows that
equivalence classes 1,Z,%2,...,2" ! form a k-basis of k[x]/(f) = k(«). O



174 UNIVERSITAT STUTTGART

3. Remark. If in the proof of the previous proposition we normalise the polyno-
mial f so that it is monic, i.e. f = 2™ + ap_12" "' + ... + ag, then f is called the
minimal polynomial of o and is uniquely determined. In general, if f € k[x] is
irreducible, then k < k[z]/(f) is a finite extension in which f has a root.

4. Examples.

(i) Let k =R and f = 22 + 1, then C = R[xz]/(2? + 1).

(ii) @ = {a € C | « algebraic over C} be the algebraic closure of Q. Then
Q(3/3) = Q has minimal polynomial X™ — 3 since it is irreducible by Eisen-
stein’s criterion. It follows that dimg Q(%/3) = n. In particular, dimg Q = oo
which shows that algebraic extensions need not be finite in general.

As the first example shows, a field k need not be algebraically closed, i.e. there
are polynomials f € k[z] which do not admit a root in k. However, we have the
following

5. Theorem (existence of the algebraic closure). For any field k there exists
an algebraic field extension k < K such that K is algebraically closed field.

Proof. See [Bol, Theorem 3.4.4]. O

Item (ii) in the previous example can be generalised as follows:

6. Definition. If k is a field and K an algebraically closed field so that k ¢ K is
algebraic, we call -
k ={a € K | « is algebraic over k}

the algebraic closure of k. The field k is determined up to isomorphism which
restricts to the identity on & (cf. [Bol Corollaries 3.4.7 and 10]).

7. Definition (Galois extensions). A field extension k¥ ¢ K is normal if any
irreducible polynomial f € k[z] which has a root in K splits into linear factors in
K|[z]. Further, k ¢ K is called separable if it is algebraic and every a € K is the
root of a separable polynomial in k[z], i.e. a polynomial whose roots are simple. A
field extension is Galois if it is normal and separable. In this case, the group of
automorphisms of K which leave k fixed is called the Galois group of the field
extension k < K.

In characterstic 0 every algebraic field extension is separable [Bo, Remark 3.6.4].
We will not make much use of Galois extensions; its main importance for us stems
from Remark For a field extension k ¢ K with K algebraically complete and
Galois, the Galois group allows in principle to identify those points in K™ which
correspond to maximal ideals in k[x1,...,2,], see Remark

8. Definition. A field k is called perfect if any algebraic field extension of k is
separable.

Since any irreducible polynomial over a field of characteristic 0 is separable [Bo,
Proposition 3.6.2], any such field is perfect. Further examples are finite fields or al-
gebraically closed fields are also perfect. One of the main features of finite separable
extensions is the
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9. Theorem of the Primitive element. If k ¢ K is a finite separable field
extension, then there exists a so-called primitive element o € K such that K =
k().

Proof. See [Bd, Proposition 3.6.12] O

Next we consider non-algebraic field extensions.

10. Definition (transcendence base). Consider a field extension k < K.
Elements oy, ...a, € K are algebraically independent if the natural surjection

klx1,...,xn] = klaq,...,an] € K — 0

sending x; to a; is actually an isomorphism of k-algebras, that is, we have an injec-
tion k[z1,...,2,] — K sending z; to a;. Put differently, if there is a polynomial
relation of the form f(ai,...,a,) =0 for f € k[z1,...,2z,], then f = 0. A family
B = {e}ier is algebraically independent if the previous definition applies for any
finite subset of B. If in this case the field extension k(B) < K is algebraic, then
A is called a transcendence base. If K = k(*B8) for some transcendence base, we
call the field extension k — K purely transcendental.

Any field extension k < K can be factorised into a purely transcendental field
extension k < k(B) c K, where the latter field extension is algebraic:

11. Proposition and Definition (transcendence degree). Any field extension
k < K admits a transcendence base. Any two transcendence bases have the same
cardinality which we call the transcendence degree and write trdeg; K.

Proof. See [Bdl, Proposition 7.1.3 and Theorem 7.1.5]. O

12. Proposition (Zariski’s lemma). Let k = K be a field extension, where K
is a finitely generated k-algebra. Then k < K is a finite field extension.

Proof. Let K = k[ay,...,a,]. If K is algebraic over k, we are done. So assume
otherwise and relabel the «; in such a way that oy = z1,...,a, = x, are alge-
braically independent over k, and x; are algebraic over the field L = k(a, ..., a;).

Hence K is a finite algebraic extension of L and therefore a finite L-module. From
Proposition [2Ji§| (i) applied to k¥ ¢ L < K, we infer that L = k[f1,...,08] is a
finitely generated k-algebra (we can, of course, also directly appeal to Noether nor-
malisation). But this can only happen if L = k. To see this rigourosly, we note
that each B; € L so that 8; = f;/g; for polynomials f; and g; in 21,...,z,. Now
there are infinitely many irreducibles in the factoriel ring k[z1,...,2,] (there are
infinitely many primes just by the same argument as for Z). Hence there is an
irreducible polynomials which is prime to any of the finitely many g; (for instance,
take h = gy - ... gs + 1 would do). Therefore, h~! € L cannot be a polynomial in
the y; (clear the common denominator and multiply by h). Contradiction. (]

Do not confuse the notion of a finitely generated k-algebra K with a finitely
generated field extension k£ © K which means that K is a finite field extension
of a purely transcendental one. If K is a finitely generated k-algebra, then there
exist o; € K such that K = k[, ...,a,]. The previous proposition then says that
no subset of these generators is algebraically independent. If k¥ < K is a finitely
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generated field extension, then K = k(a,...,«,) where we can label the «; in
such a way that «q,...,a, form a transcendence base so that k(ay,...,a,) ¢ K
is an algebraic, in fact finite extension of the purely transcendental field extension
kck(ar,...,am).

13. Proposition and definition (separably generated field extensions).
A field extension k < K is separably generated if there is a transcendence base
B such that k(B) c K is a separable algebraic extension. In this case, B is called
a separating transcendence base. For a finitely and separably generated field
extension k ¢ K = k(aq,...,q,) the set of generators {c;} contains a separating
transcendence base.

Proof. See [Bol, Proposition 7.3.7] O

14. Proposition (perfect fields and separably generated field extensions).
If k is a perfect field, any finitely generated field extension k < K is separably
generated.

Proof. See [Bol, Corollary 3.7.8]. O
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