

Blatt 2

Aufgabe 1: Erweiterung und Kontraktion von Idealen

Sei $f: A \to B$ ein Ringmorphismus. Zeigen Sie, dass

- (i) $\mathfrak{a} \subset \mathfrak{a}^{ec}$ und $\mathfrak{b} \supset \mathfrak{b}^{ce}$;
- (ii) $\mathfrak{b}^c = \mathfrak{b}^{cec}$ und $\mathfrak{a}^e = \mathfrak{a}^{ece}$;
- (iii) sei \mathcal{C} die Menge der kontrahierten Ideale unter f in A und \mathcal{E} die Menge der erweiterten Ideale unter f in B, dann gilt $\mathcal{C} = \{\mathfrak{a} \mid \mathfrak{a}^{ec} = \mathfrak{a}\}, \mathcal{E} = \{\mathfrak{b} \mid \mathfrak{b}^{ce} = \mathfrak{b}\};$
- (iv) die Abbildung $\mathfrak{a} \mapsto \mathfrak{a}^e$ definiert eine Bijektion von \mathcal{C} auf \mathcal{E} , dessen Inverse $\mathfrak{b} \mapsto \mathfrak{b}^c$ ist.

Aufgabe 2: Berechnung von Spec $\mathbb{Z}[x]$ und Spec k[x,y]

Beweisen Sie die Aussage (v) und (vi) des Beispiels 0.25 im Skript.

Hinweis: Schreiben Sie B = k[x] und K = k(x) = Quot B in (v), und $B = \mathbb{Z}$ und $K = \mathbb{Q}$ in (vi). Dann ist B ein Hauptidealring und K sein Quotientenkörper. Zeigen Sie dann: Die Primideale des faktoriellen Rings A = B[y] sind (0), (p) für $p \in A$ prim, oder maximale Ideale der Form $\mathfrak{m} = (p,g)$, wobei $p \in B$ irreduzibel und $g \in A$ derart ist, dass $\bar{g} \in B/(p)[y]$ irreduzibel ist. Folgern Sie, dass A/\mathfrak{m} eine endliche Körpererweiterung von B/(p) ist. Insbesondere gilt: Ist k algebraisch abgeschlossen, so ist $\mathfrak{m} = (x - a, y - b)$ für $a, b \in k$.

Aufgabe 3: Zariski-Topologie von $\operatorname{Spec} A$

Für $T \subset A$ sei $\mathcal{Z}(T) \subset \operatorname{Spec} A$ die Menge aller Primideale von A, welche T enthalten. Zeigen Sie:

- (i) Ist \mathfrak{a} das von T erzeugte Ideal $\Rightarrow \mathcal{Z}(T) = \mathcal{Z}(\mathfrak{a}) = \mathcal{Z}(\sqrt{\mathfrak{a}})$ und $\mathcal{Z}(\mathfrak{a}) = \operatorname{Spec} A/\mathfrak{a}$;
- (ii) $\mathcal{Z}(0) = \operatorname{Spec} A \text{ und } \mathcal{Z}(1) = \emptyset;$
- (iii) ist $(T_i)_{i\in I}$ eine Familie von Teilmengen von $A \Rightarrow \mathcal{Z}(\bigcup_{i\in I} T_i) = \bigcap_{i\in I} \mathcal{Z}(T_i);$
- (iv) $\mathcal{Z}(\mathfrak{a} \cap \mathfrak{b}) = \mathcal{Z}(\mathfrak{a}\mathfrak{b}) = \mathcal{Z}(\mathfrak{a}) \cup \mathcal{Z}(\mathfrak{b})$ für je zwei Ideale \mathfrak{a} , \mathfrak{b} von A.

Bemerkung: Die Mengen der Form $\mathcal{Z}(T)$ erfüllen die Axiome für die geschlossenen Mengen einer Topologie, der sogenannten Zariski-Topologie auf Spec A.

Aufgabe 4: Eine Basis der Zariski-Topologie

Für $a \in A$ sei D_a das Komplement von $\mathcal{Z}(a) := \mathcal{Z}((a))$ in Spec A. Zeigen Sie:

- (i) $\{D_a\}_{a\in A}$ bildet eine Basis offener Mengen für die Zariski-Topologie, d.h. jede offene Menge ist eine Vereinigung offener Mengen der Form D_a ;
- (ii) $D_a \cap D_b = D_{ab}$;
- (iii) $D_a = \emptyset \Leftrightarrow a \text{ ist nilpotent};$
- (iv) $D_a = \operatorname{Spec} A \Leftrightarrow a \text{ ist eine Einheit};$
- (v) $D_a = D_b \Leftrightarrow \sqrt{(a)} = \sqrt{(b)}$;
- (vi) Spec A ist quasi-kompakt, d.h. jede offene Überdeckung von Spec A hat eine endliche Teil- überdeckung.