Übungsblatt 8

Aufgabe 36:

- a) Sei p eine ungerade Primzahl und G eine nichtabelsche Gruppe der Ordnung p^3 . Berechnen Sie die Wedderburnzerlegung von $\mathbb{C}G$.
- b) Ist die Gruppe der unipotenten (d.h. alle Hauptdiagonaleinträge sind 1) oberen Dreiecksmatrizen über dem Körper mit p Elementen isomorph zum nichttrivialen semidirekten Produkt der Form $C_{p^2} \rtimes C_p$?

Aufgabe 37:

- a) Wieviele Konjugiertenklassen kann eine Gruppe der Ordnung 32 haben?
- b) Sei G eine Gruppe der Ordnung 315 = $3^2 \cdot 5 \cdot 7$. Zeigen Sie, dass G mindestens 11 Konjugiertenklassen hat.

Aufgabe 38:

Sei M eine G - Menge, G eine endliche Gruppe und K ein Teilkörper von $\mathbb C$. Der K - Vektorraum mit Basis M wird dann in natürlicher Weise zu einem KG - Modul. Bezeichnet μ_g die Linksmultiplikation auf M, dann ist μ_g eine K - lineare Abbildung von M. Bezeichnet M_g die Matrixdarstellung von μ_g bezüglich der Basis M, dann ist

$$\varphi: G \longrightarrow \operatorname{GL}(|M|, K)$$
 gegeben durch $g \mapsto M_g$

eine K - Darstellung von G bestehend aus Permutationsmatrizen. Der zugehörige K - Charakter werde mit χ_M bezeichnet.

- a) Zeigen Sie: $\chi_M(g) := |\{m \in M; g \cdot m = m\}|$
- b) Bezeichne χ_1 den trivialen irreduziblen Charakter, dann ist die Anzahl der Bahnen von G auf M gerade durch

$$<\chi_M,\chi_1>$$

gegeben.

Aufgabe 39:

Sei M eine endliche G - Menge. Durch $g \cdot (m_1, m_2) := (g \cdot m_1, g \cdot m_2)$ für $g \in G, m_1, m_2 \in M$ wird $M \times M$ zu einer G - Menge. χ_M bzw. $\chi_{M \times M}$ seien wie in der vorigen Aufgabe definiert. G operiere auf M 2- fach transitiv.

- a) Berechnen Sie die Anzahl der Bahnen von G auf $M \times M$.
- b) Berechnen Sie $\chi_{M\times M}$ in Abhängigkeit von χ_M . c) Zeigen Sie: $\sum_{g\in G}\chi_M(g)^2=2\cdot |G|$.
- d) Zeigen Sie:

$$\chi_M = \chi_1 + \chi_2 \ ,$$

wobei χ_1 der triviale irreduzible Charakter und χ_2 irreduzibel ist.

Aufgabe 40:

Zeigen Sie: Ist G eine p - Gruppe mit zyklischem Zentrum, dann hat G einen treuen irreduziblen Charakter.