Übungsblatt 10

Aufgabe 46:

Verifizieren Sie das Resultat von R. Brauer, dass jeder irreduzible Charakter in den Potenzen eines treuen Charakters als Summand auftaucht, mit einem irreduziblen Charakter vom Grad 3 von S_4 .

Aufgabe 47:

- a) Sei K ein Körper, G eine endliche Gruppe, $N \triangleleft G$ sowie U ein halbeinfacher KG Modul. Dann ist der KN Modul U_N der aus U durch Einschränkung der Operation auf KN entsteht, halbeinfach. (**Hinweis:** Es genügt der Fall, dass U einfach ist. Warten Sie die **Vorlesung am Donnerstag 23.7.** ab)
- b) Zeigen Sie: Ist M ein einfacher $\mathbb{C}S_n$ Modul, dann ist der $\mathbb{C}A_n$ Modul M_{A_n} entweder ein einfacher $\mathbb{C}A_n$ Modul oder isomorph zu einer direkten Summe zweier einfacher $\mathbb{C}A_n$ Moduln gleichen Grades.

Aufgabe 48:

Berechnen Sie die Charaktertafel der alternierenden Gruppe vom Grad 5. Gehen Sie dabei folgendermaßen vor:

- (i) Berechnen Sie zunächst die Konjugiertenklassen von A_5 , ihre Längen. Die Konjugiertenklassen von S_5 dürfen als bekannt vorausgesetzt werden.
- (ii) Berechnen Sie den Charakter zum Permutationsmodul $\mathbb{C}A_5/A_4$ und zerlegen Sie diesen in irreduzible Charaktere. (Hinweis: Ist hier etwas 2-fach transitiv?)
- (iii) Verwenden Sie die Ergebnisse aus Aufgabe 44 und behandeln Sie offene Fragen mit den Orthogonalitätsrelationen.

Aufgabe 49:

Berechnen Sie die Charaktertafel von S_5 durch Induktion aus Charaktertafeln geeigneter Untergruppen und Ausreduzieren der induzierten Charaktere.

Aufgabe 50:

Seien p, q, r paarweise verschiedene **ungerade** Primzahlen. Zeigen Sie, dass es keine einfache Gruppe der Ordnung $p^2 \cdot q \cdot r$ gibt.

Hinweis: Verwenden Sie Sylowsatz und Eigenschaften von Frobeniusgruppen.